Skip to main content

Retinaface implementation in Pytorch.

Project description

Retinaface

https://habrastorage.org/webt/uj/ff/vx/ujffvxxpzixwlmae8gyh7jylftq.jpeg

This repo is build on top of https://github.com/biubug6/Pytorch_Retinaface

Differences

Train loop moved to Pytorch Lightning

IT added a set of functionality:

  • Distributed training
  • fp16
  • Syncronized BatchNorm
  • Support for various loggers like W&B or Neptune.ml

Hyperparameters are fedined in config file

Hyperparameters that were scattered across the code moved to the config at retinadace/config

Augmentations => Albumentations

Color that were manually implemented replaced by the Albumentations library.

Todo:

  • Horizontal Flip is not implemented in Albumentations
  • Spatial transforms like rotations or transpose are not implemented yet.

Color transforms are defined in the config.

Added mAP calculation for validation

In order to track thr progress, mAP metric is calculated on validation.

Installation

pip install -U retinaface_pytorch

Example inference

import cv2
from retinaface.pre_trained_models import get_model

image = <numpy array with shape (height, width, 3)>

model = get_model("resnet50_2020-07-20", max_size=2048)
model.eval()
annotation = model.predict_jsons(image)

Jupyter notebook with the example: Open In Colab

Data Preparation

The pipeline expects labels in the format:

[
  {
    "file_name": "0--Parade/0_Parade_marchingband_1_849.jpg",
    "annotations": [
      {
        "bbox": [
          449,
          330,
          571,
          720
        ],
        "landmarks": [
          [
            488.906,
            373.643
          ],
          [
            542.089,
            376.442
          ],
          [
            515.031,
            412.83
          ],
          [
            485.174,
            425.893
          ],
          [
            538.357,
            431.491
          ]
        ]
      }
    ]
  },

You can convert the default labels of the WiderFaces to the json of the propper format with this script.

Training

python retinaface/train.py -h
usage: train.py [-h] -c CONFIG_PATH

optional arguments:
  -h, --help            show this help message and exit
  -c CONFIG_PATH, --config_path CONFIG_PATH
                        Path to the config.

Inference

python retinaface/inference.py -h
usage: inference.py [-h] -i INPUT_PATH -c CONFIG_PATH -o OUTPUT_PATH [-v]
                    [-g NUM_GPUS] [-m MAX_SIZE] [-b BATCH_SIZE]
                    [-j NUM_WORKERS]
                    [--confidence_threshold CONFIDENCE_THRESHOLD]
                    [--nms_threshold NMS_THRESHOLD] -w WEIGHT_PATH
                    [--keep_top_k KEEP_TOP_K] [--world_size WORLD_SIZE]
                    [--local_rank LOCAL_RANK] [--fp16]

optional arguments:
  -h, --help            show this help message and exit
  -i INPUT_PATH, --input_path INPUT_PATH
                        Path with images.
  -c CONFIG_PATH, --config_path CONFIG_PATH
                        Path to config.
  -o OUTPUT_PATH, --output_path OUTPUT_PATH
                        Path to save jsons.
  -v, --visualize       Visualize predictions
  -g NUM_GPUS, --num_gpus NUM_GPUS
                        The number of GPUs to use.
  -m MAX_SIZE, --max_size MAX_SIZE
                        Resize the largest side to this number
  -b BATCH_SIZE, --batch_size BATCH_SIZE
                        batch_size
  -j NUM_WORKERS, --num_workers NUM_WORKERS
                        num_workers
  --confidence_threshold CONFIDENCE_THRESHOLD
                        confidence_threshold
  --nms_threshold NMS_THRESHOLD
                        nms_threshold
  -w WEIGHT_PATH, --weight_path WEIGHT_PATH
                        Path to weights.
  --keep_top_k KEEP_TOP_K
                        keep_top_k
  --world_size WORLD_SIZE
                        number of nodes for distributed training
  --local_rank LOCAL_RANK
                        node rank for distributed training
  --fp16                Use fp6
python -m torch.distributed.launch --nproc_per_node=<num_gpus> retinaface/inference.py <parameters>

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

retinaface_pytorch-0.0.4.tar.gz (22.1 kB view details)

Uploaded Source

Built Distribution

retinaface_pytorch-0.0.4-py2.py3-none-any.whl (24.5 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file retinaface_pytorch-0.0.4.tar.gz.

File metadata

  • Download URL: retinaface_pytorch-0.0.4.tar.gz
  • Upload date:
  • Size: 22.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.3

File hashes

Hashes for retinaface_pytorch-0.0.4.tar.gz
Algorithm Hash digest
SHA256 d6640d1b8d1c01bfc0aec1c33ca4c3038d06df21f8ffb72e7e60f2b5166a0984
MD5 f79c4725847f600d85170ef48712c7f3
BLAKE2b-256 80411061612556f4da5378f450ee6d5db328ba24eeb33067c7440bd7496bb12f

See more details on using hashes here.

File details

Details for the file retinaface_pytorch-0.0.4-py2.py3-none-any.whl.

File metadata

  • Download URL: retinaface_pytorch-0.0.4-py2.py3-none-any.whl
  • Upload date:
  • Size: 24.5 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.3

File hashes

Hashes for retinaface_pytorch-0.0.4-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 6a3ef6f00922f165e978997389fba961a0d8306f2b9f4cf702a1b7f05e5f3077
MD5 33d52b62a6c5eb449ca4a976ba67abf5
BLAKE2b-256 d9143a414b1bbde981e738383b4517441f30938804267c003c08cdbb7200a762

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page