Skip to main content

Retinaface implementation in Pytorch.

Project description

Retinaface

https://habrastorage.org/webt/uj/ff/vx/ujffvxxpzixwlmae8gyh7jylftq.jpeg

This repo is build on top of https://github.com/biubug6/Pytorch_Retinaface

Differences

Train loop moved to Pytorch Lightning

IT added a set of functionality:

  • Distributed training
  • fp16
  • Syncronized BatchNorm
  • Support for various loggers like W&B or Neptune.ml

Hyperparameters are fedined in config file

Hyperparameters that were scattered across the code moved to the config at retinadace/config

Augmentations => Albumentations

Color that were manually implemented replaced by the Albumentations library.

Todo:

  • Horizontal Flip is not implemented in Albumentations
  • Spatial transforms like rotations or transpose are not implemented yet.

Color transforms are defined in the config.

Added mAP calculation for validation

In order to track thr progress, mAP metric is calculated on validation.

Installation

pip install -U retinaface_pytorch

Example inference

import cv2
from retinaface.pre_trained_models import get_model

image = <numpy array with shape (height, width, 3)>

model = get_model("resnet50_2020-07-20", max_size=2048)
model.eval()
annotation = model.predict_jsons(image)

Jupyter notebook with the example: Open In Colab

Data Preparation

The pipeline expects labels in the format:

[
  {
    "file_name": "0--Parade/0_Parade_marchingband_1_849.jpg",
    "annotations": [
      {
        "bbox": [
          449,
          330,
          571,
          720
        ],
        "landmarks": [
          [
            488.906,
            373.643
          ],
          [
            542.089,
            376.442
          ],
          [
            515.031,
            412.83
          ],
          [
            485.174,
            425.893
          ],
          [
            538.357,
            431.491
          ]
        ]
      }
    ]
  },

You can convert the default labels of the WiderFaces to the json of the propper format with this script.

Training

python retinaface/train.py -h
usage: train.py [-h] -c CONFIG_PATH

optional arguments:
  -h, --help            show this help message and exit
  -c CONFIG_PATH, --config_path CONFIG_PATH
                        Path to the config.

Inference

python retinaface/inference.py -h
usage: inference.py [-h] -i INPUT_PATH -c CONFIG_PATH -o OUTPUT_PATH [-v]
                    [-g NUM_GPUS] [-m MAX_SIZE] [-b BATCH_SIZE]
                    [-j NUM_WORKERS]
                    [--confidence_threshold CONFIDENCE_THRESHOLD]
                    [--nms_threshold NMS_THRESHOLD] -w WEIGHT_PATH
                    [--keep_top_k KEEP_TOP_K] [--world_size WORLD_SIZE]
                    [--local_rank LOCAL_RANK] [--fp16]

optional arguments:
  -h, --help            show this help message and exit
  -i INPUT_PATH, --input_path INPUT_PATH
                        Path with images.
  -c CONFIG_PATH, --config_path CONFIG_PATH
                        Path to config.
  -o OUTPUT_PATH, --output_path OUTPUT_PATH
                        Path to save jsons.
  -v, --visualize       Visualize predictions
  -g NUM_GPUS, --num_gpus NUM_GPUS
                        The number of GPUs to use.
  -m MAX_SIZE, --max_size MAX_SIZE
                        Resize the largest side to this number
  -b BATCH_SIZE, --batch_size BATCH_SIZE
                        batch_size
  -j NUM_WORKERS, --num_workers NUM_WORKERS
                        num_workers
  --confidence_threshold CONFIDENCE_THRESHOLD
                        confidence_threshold
  --nms_threshold NMS_THRESHOLD
                        nms_threshold
  -w WEIGHT_PATH, --weight_path WEIGHT_PATH
                        Path to weights.
  --keep_top_k KEEP_TOP_K
                        keep_top_k
  --world_size WORLD_SIZE
                        number of nodes for distributed training
  --local_rank LOCAL_RANK
                        node rank for distributed training
  --fp16                Use fp6
python -m torch.distributed.launch --nproc_per_node=<num_gpus> retinaface/inference.py <parameters>

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

retinaface_pytorch-0.0.5.tar.gz (22.2 kB view details)

Uploaded Source

Built Distribution

retinaface_pytorch-0.0.5-py2.py3-none-any.whl (24.6 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file retinaface_pytorch-0.0.5.tar.gz.

File metadata

  • Download URL: retinaface_pytorch-0.0.5.tar.gz
  • Upload date:
  • Size: 22.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.3

File hashes

Hashes for retinaface_pytorch-0.0.5.tar.gz
Algorithm Hash digest
SHA256 a8c6f6fc163141155d1e90817825e627b1b69bdd01ef26cc8af9bb8ba7f08304
MD5 dc7b077690ccbeef1c05f162d113a5d0
BLAKE2b-256 924fc6b9cb5072ee5c66704ff1eff6db9e383fb516c18051acdb8ffce81fbcc4

See more details on using hashes here.

File details

Details for the file retinaface_pytorch-0.0.5-py2.py3-none-any.whl.

File metadata

  • Download URL: retinaface_pytorch-0.0.5-py2.py3-none-any.whl
  • Upload date:
  • Size: 24.6 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.3.1 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.3

File hashes

Hashes for retinaface_pytorch-0.0.5-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 0139270f5b1b580f2dd2652d57e1fb0669a8f2cbe81e1e5042c30424ee0a6ad7
MD5 362ab8e89e98877057b3a8128933ca7e
BLAKE2b-256 db7edcedc5838e3c9836c5276d4d2dab45b2968570367cecadb15bec41ea146f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page