REvolutionH-tl: Reconstruction of Evolutionary Histories tool
Project description
Bioinformatics tool for the reconstruction of evolutionary histories. Input: fasta files or sequence alignment hits, Output: orthology. event-labeled gene trees, and reconciliations.
Bioinformatics & complex networks lab
- José Antonio Ramírez-Rafael [jose.ramirezra@cinvestav.mx]
- Maribel Hernandez-Rosales [maribel.hr@cinvestav.mx ]
Install
pip install revolutionhtl
Requirements
If you want to run sequence alignments using revolutionhtl, then install Diamond.
Usage
python -m revolutionhtl <arguments>
Below are described the steps of the program, as well as the arguments to specify input files.
Steps
- Orthogroup & best hit selection. Input: alignment hits (generate this using
revolutionhtl.diamond
) . - Orthology and gene tree reconstruction. Input: best hits (generate this at step 1).
- Species tree reconstruction. Input: gene trees (generate this at step 2).
- Tree reconciliation. Input: gene and species trees (generate this at steps 2 and 3).
Arguments
Input data (Click to expand)
- -h --helpshow this help message and exit
-steps [integers]
List of steps to run (default: 1 2 3 4).
-alignment_h --alignment_hits [string]
Directory containing alignment hits, the input of step 1. (default: ./).
-best_h --best_hits [string]
.tsv file containing best hits, the input of step 2. (default: use output of step 1).
-T --gene_trees [string]
.tsv file containing gene trees, the input of steps 3 and 4. (default: use output of step 2).
-S --species_tree [string]
.nhx file containing a species tree, an input of step 4. (default: use output of step 3).
File names (Click to expand)
-o --output_prefix [string]Prefix used for output files (default "tl_project").
-og --orthogroup_column [string]
Column in -best_h -T, and output files specifying orthogroups (default: OG).
-Nm --N_max [integer]
Indicates the maximum number of genes in a orthogroup, bigger orthogroups are splitted. If 0, no orthogroup is splitted. (default= 2000).
-k --k_size_partition [integer]
Integer indicatng how many best hit graphs will be processed in bunch:: first graphs with
Algorithm parameters (Click to expand)
-bh_heuristic --besthit_heuristic [string]Indicates how to normalize bit-score in step 1 (default: normal). Normal: no normalization, prt: use proteinortho auxiliary files, smallest: use length of the smallest sequence, target: use target sequence, query: use query sequence, directed: x->y hit, bidirectional: use x->y and y->x hits.
Options: normal, prt, smallest_bidirectional, smallest_directed, query_directed, target_directed, alignment_directed, query_bidirectional, target_bidirectional, alignment_bidirectional
-f --f_value [float]
Real number between 0 and 1, a parameter of step 1. Defines the adaptative threshhold as: f\*max_bit_score (default: 0.95).
-bmg_h --bmg_heuristic [string]
Comunity detection method, an heuristic of step 2. (default: Louvain).
Options: Mincut, BPMF, Karger, Greedy, Gradient_Walk, Louvain, Louvain_Obj
-bmgh_nb --bmgh_no_binary [bool]
Flag, specifies if force binary tree in step 2. (no flag: force binary, flag: do not force binary).
-stree_h --species_tree_heuristic [string]
Comunity detection method, an heuristic of step 3. (default: louvain_weight).
Options: naive, louvain, mincut, louvain_weight
-streeh_repeats --stree_heuristic_repeats [integer]
integer, specifies how many times run the heuristic of step 3. (default: 3)
-streeh_b --streeh_binary [bool]
Flag, specifies if force binary tree in step 3. (no flag: do not force binary, flag: force binary).
-streeh_ndb --streeh_no_doble_build [bool]
Flag, specifies if run build algorithm twice to obtain less resolved tree in step 3. (no flag: double build, flag: single build).
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
revolutionhtl-1.0.13.tar.gz
(36.7 kB
view hashes)
Built Distribution
Close
Hashes for revolutionhtl-1.0.13-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 27bb72b9caad816ef9f11564ca508e95244e98bec6c238e12af7f385b89d7b3e |
|
MD5 | 31f4e65d18fe8559af29dcf17a45dbaf |
|
BLAKE2b-256 | c81aa18d394965327b9da928aa5db991f6d314905640f20d2045b18aa351a4b5 |