Skip to main content

REvolutionH-tl: Reconstruction of Evolutionary Histories tool

Project description

REvolutionH-tl logo.

Bioinformatics tool for the reconstruction of evolutionary histories. Input: fasta files or sequence alignment hits, Output: orthology. event-labeled gene trees, and reconciliations.

Bioinformatics & complex networks lab

Install

pip install revolutionhtl

Requirements

Python >=3.7

If you want to run sequence alignments using revolutionhtl, then install Diamond.

Usage

Go to the wiki for details and an example.

python -m revolutionhtl <arguments>

Below are described the steps of the program, as well as the arguments to specify input files.

Steps

  1. Orthogroup & best hit selection. Input: alignment hits (generate this using revolutionhtl.diamond) .
  2. Orthology and gene tree reconstruction. Input: best hits (generate this at step 1).
  3. Species tree reconstruction. Input: gene trees (generate this at step 2).
  4. Tree reconciliation. Input: gene and species trees (generate this at steps 2 and 3).

Arguments

Input data (Click to expand) - -h --help
show this help message and exit

-steps [integers]
List of steps to run (default: 1 2 3 4).

-alignment_h --alignment_hits [string]
Directory containing alignment hits, the input of step 1. (default: ./).

-best_h --best_hits [string]
.tsv file containing best hits, the input of step 2. (default: use output of step 1).

-T --gene_trees [string]
.tsv file containing gene trees, the input of steps 3 and 4. (default: use output of step 2).

-S --species_tree [string]
.nhx file containing a species tree, an input of step 4. (default: use output of step 3).

File names (Click to expand) -o --output_prefix [string]
Prefix used for output files (default "tl_project").

-og --orthogroup_column [string]
Column in -best_h -T, and output files specifying orthogroups (default: OG).

-Nm --N_max [integer]
Indicates the maximum number of genes in a orthogroup, bigger orthogroups are splitted. If 0, no orthogroup is splitted. (default= 2000).

-k --k_size_partition [integer]
Integer indicatng how many best hit graphs will be processed in bunch:: first graphs with
Algorithm parameters (Click to expand) -bh_heuristic --besthit_heuristic [string]
Indicates how to normalize bit-score in step 1 (default: normal). Normal: no normalization, prt: use proteinortho auxiliary files, smallest: use length of the smallest sequence, target: use target sequence, query: use query sequence, directed: x->y hit, bidirectional: use x->y and y->x hits.
Options: normal, prt, smallest_bidirectional, smallest_directed, query_directed, target_directed, alignment_directed, query_bidirectional, target_bidirectional, alignment_bidirectional

-f --f_value [float]
Real number between 0 and 1, a parameter of step 1. Defines the adaptative threshhold as: f\*max_bit_score (default: 0.95).

-bmg_h --bmg_heuristic [string]
Comunity detection method, an heuristic of step 2. (default: Louvain).
Options: Mincut, BPMF, Karger, Greedy, Gradient_Walk, Louvain, Louvain_Obj

-bmgh_nb --bmgh_no_binary [bool]
Flag, specifies if force binary tree in step 2. (no flag: force binary, flag: do not force binary).

-stree_h --species_tree_heuristic [string]
Comunity detection method, an heuristic of step 3. (default: louvain_weight).
Options: naive, louvain, mincut, louvain_weight

-streeh_repeats --stree_heuristic_repeats [integer]
integer, specifies how many times run the heuristic of step 3. (default: 3)

-streeh_b --streeh_binary [bool]
Flag, specifies if force binary tree in step 3. (no flag: do not force binary, flag: force binary).

-streeh_ndb --streeh_no_doble_build [bool]
Flag, specifies if run build algorithm twice to obtain less resolved tree in step 3. (no flag: double build, flag: single build).

pipeline

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

revolutionhtl-1.0.13.tar.gz (36.7 kB view hashes)

Uploaded Source

Built Distribution

revolutionhtl-1.0.13-py3-none-any.whl (43.3 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page