Skip to main content

Rectified Convolution

Project description

PyPI PyPI Pre-release pytest License

RFConv

Rectified Convolution

Pretrained Model

model baseline rectified
ResNet-50 76.66 77.10
ResNet-101 78.13 78.74
ResNeXt-50_32x4d 78.17 78.48
ResNeSt-50_2s8x 78.73 79.38

Verify Models:

Prepare ImageNet dataset:

cd scripts/dataset/
# assuming you have downloaded the dataset in the current folder
python prepare_imagenet.py --download-dir ./

Test Model

# use resnest50 as an example
cd scripts/
python verify.py --model resnet50 --crop-size 224

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rfconv-0.0.2b20210323.tar.gz (8.2 kB view details)

Uploaded Source

Built Distribution

rfconv-0.0.2b20210323-py3-none-any.whl (16.1 kB view details)

Uploaded Python 3

File details

Details for the file rfconv-0.0.2b20210323.tar.gz.

File metadata

  • Download URL: rfconv-0.0.2b20210323.tar.gz
  • Upload date:
  • Size: 8.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.7.10

File hashes

Hashes for rfconv-0.0.2b20210323.tar.gz
Algorithm Hash digest
SHA256 9e5737133aaf34a21803e104db9b84b7debfa176e0960b0e81e3dfa25959c6cd
MD5 e92c573b1278a662255ac17210f5934a
BLAKE2b-256 ee4a3db0e49455526410e2c898e76c54cdc579134344008e9bef4634787ff2d8

See more details on using hashes here.

File details

Details for the file rfconv-0.0.2b20210323-py3-none-any.whl.

File metadata

  • Download URL: rfconv-0.0.2b20210323-py3-none-any.whl
  • Upload date:
  • Size: 16.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.7.10

File hashes

Hashes for rfconv-0.0.2b20210323-py3-none-any.whl
Algorithm Hash digest
SHA256 2a9d64924271d227cbbed108fde7640309bd93b1fe50988ae776f013534bf062
MD5 206447e703dd0c68f0df76111216d6e5
BLAKE2b-256 8da105871c17fd9c5b17a2f5a38f15e2892c5548f83419ba332345f4c4e3bdf5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page