Skip to main content

Rectified Convolution

Project description

PyPI PyPI Pre-release pytest License

RFConv

Rectified Convolution

Pretrained Model

model baseline rectified
ResNet-50 76.66 77.10
ResNet-101 78.13 78.74
ResNeXt-50_32x4d 78.17 78.48
ResNeSt-50_2s8x 78.73 79.38

Verify Models:

Prepare ImageNet dataset:

cd scripts/dataset/
# assuming you have downloaded the dataset in the current folder
python prepare_imagenet.py --download-dir ./

Test Model

# use resnest50 as an example
cd scripts/
python verify.py --model resnet50 --crop-size 224

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rfconv-0.0.2b20210327.tar.gz (8.2 kB view details)

Uploaded Source

Built Distribution

rfconv-0.0.2b20210327-py3-none-any.whl (16.1 kB view details)

Uploaded Python 3

File details

Details for the file rfconv-0.0.2b20210327.tar.gz.

File metadata

  • Download URL: rfconv-0.0.2b20210327.tar.gz
  • Upload date:
  • Size: 8.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.8.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.7.10

File hashes

Hashes for rfconv-0.0.2b20210327.tar.gz
Algorithm Hash digest
SHA256 4c52da75ac9da2dd5347332dee0601cc5ff05e25d56bc62ef48b492ee83f4889
MD5 b09e6bf97a6a7348a3d00a869f593b1f
BLAKE2b-256 dca5f5b635fadb9a0540f52a0ee9fc579bcfbe935fb3e5d63781564bc591b389

See more details on using hashes here.

File details

Details for the file rfconv-0.0.2b20210327-py3-none-any.whl.

File metadata

  • Download URL: rfconv-0.0.2b20210327-py3-none-any.whl
  • Upload date:
  • Size: 16.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.8.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.7.10

File hashes

Hashes for rfconv-0.0.2b20210327-py3-none-any.whl
Algorithm Hash digest
SHA256 dcf764d55fa86907667dbad882dbb310fcd7af2cf271f7fe287a47d7e69e1ba7
MD5 725f65d1de608458fb3e5f346d93e18e
BLAKE2b-256 85bf0c0218983d126a604833e48065ba5128f68874d17007d5ce5253fc453b00

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page