Skip to main content

Rectified Convolution

Project description

PyPI PyPI Pre-release pytest License

RFConv

Rectified Convolution

Pretrained Model

model baseline rectified
ResNet-50 76.66 77.10
ResNet-101 78.13 78.74
ResNeXt-50_32x4d 78.17 78.48
ResNeSt-50_2s8x 78.73 79.38

Verify Models:

Prepare ImageNet dataset:

cd scripts/dataset/
# assuming you have downloaded the dataset in the current folder
python prepare_imagenet.py --download-dir ./

Test Model

# use resnest50 as an example
cd scripts/
python verify.py --model resnet50 --crop-size 224

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rfconv-0.0.2b20210403.tar.gz (8.2 kB view details)

Uploaded Source

Built Distribution

rfconv-0.0.2b20210403-py3-none-any.whl (16.1 kB view details)

Uploaded Python 3

File details

Details for the file rfconv-0.0.2b20210403.tar.gz.

File metadata

  • Download URL: rfconv-0.0.2b20210403.tar.gz
  • Upload date:
  • Size: 8.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.7.10

File hashes

Hashes for rfconv-0.0.2b20210403.tar.gz
Algorithm Hash digest
SHA256 57ccc0668e610f833f939855a2699f105a971343a201805fda3d510b55d048d4
MD5 63e35334cd5a63bf47305383e4907096
BLAKE2b-256 63a1ab0c7d404ab7ab07ac82e0d48f33cdda8cb94242ea2b3115ed75bae14e9d

See more details on using hashes here.

File details

Details for the file rfconv-0.0.2b20210403-py3-none-any.whl.

File metadata

  • Download URL: rfconv-0.0.2b20210403-py3-none-any.whl
  • Upload date:
  • Size: 16.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.7.10

File hashes

Hashes for rfconv-0.0.2b20210403-py3-none-any.whl
Algorithm Hash digest
SHA256 798841bc37d3ae453093dd5639995a57dd715835d2fcf1d8d4cf3286a87528b3
MD5 82cfdbb8745905dfc35eeae03583e815
BLAKE2b-256 dadd270491bc9b0b5e46f8aa9eab1ff5f5a8c18faf4ca9a5cfbcd3ae602f2545

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page