Skip to main content

Classifying Putative Riboswitch Sequences

Project description

RIBOFLOW - classifying riboswitches with >99% accuracy

riboflow is a python package for classifying putative riboswitch sequences into one of 32 classes with > 99% accuracy. It is based on a tensorflow deep learning model. riboflow has been tested using Python 3.5.2.

Installation

The easiest way to install the package is via pip

$ pip install riboflow

Dependencies:

numpy==1.14.5
tensorflow==1.8.0   
keras==2.2.0 

A trained Bi-directional Recurent Neural Network (RNN) Model is integrated into the riboflow package (and installed automatically with the pip). Note that the source code to generate the Bi-directional Recurent Neural Network Model is available. The git repository Riboswitch Classification could be forked to generate a new model.

Problem Statement

Riboswitches are metabolite-sensing mRNAs, for e.g, amino acid or metal ion sensors, that switch conformation upon binding the cognate ligand, thereby exerting control on translation. It would be of interest to classfify the ligand-specificity of riboswitches given their sequence.

The prediction problem:

Given the riboswitch sequence, predict the riboswitch class (as given by the ligand-specificity of the riboswitch).

Machine learning formulation:

  • Input: Riboswitch sequence
  • Source dataset: Rfam database (rfam.org)
  • Output: Riboswitch class
  • Best-performing Classifier: Bi-directional RNN (>99% accuracy)
  • Features used in the best-performing classifier: the full riboswitch sequence

Usage

Once riboflow is installed, please follow the steps to predict the class of a new riboswitch sequence:

1. Import the package:

  • Inside the python shell or in the python file::

    > import riboflow
    

2. Construct a list of riboswitch sequences:

    > # A sequence is a string in alphabet 'ATGC'
    > sequences = [
        "TTTTTTTTGCAGGGGTGGCTTTAGGGCCTGAGAAGATACCCATTGAACCTGACCTGGCTAAAACCAGGGTAGGGAATTGCAGAAATGTCCTCATT",
        "CTCTTATCCAGAGCGGTAGAGGGACTGGCCCTTTGAAGCCCAGCAACCTACACTTTTTGTTGTAAGGTGCTAACCTGAGCAGGAGAAATCCTGACCGATGAGAG",
        "CCACGATAAAGGTAAACCCTGAGTGATCAGGGGGCGCAAAGTGTAGGATCTCAGCTCAAGTCATCTCCAGATAAGAAATATCAGAAAGATAGCCTTACTGCCGAA"
      ]

3a. Predict the class for each riboswitch sequence:

    > # Predict the most probable riboswitch class of each sequence
    > riboflow.predict(sequences, "predict_class")

3b. Predict a vector of class probabilities for each riboswitch sequence:

    > # Predict probabilty of each riboswitch class associated with each sequence 
    > riboflow.predict(sequences, "predict_prob")

Riboswitches Accounted For

1.  'RF00504 - Glycine Riboswitch'
2.  'RF01786 - Cyclic di-GMP-II riboswitch'
3.  'RF01750 - ZMP/ZTP riboswitch'
4.  'RF00059 - TPP riboswitch (THI element)'
5.  'RF01057 - S-adenosyl-L-homocysteine riboswitch'
6.  'RF01725 - SAM-I/IV variant riboswitch'
7.  'RF00162 - SAM riboswitch (S box leader)'
8.  'RF00174 - Cobalamin riboswitch'
9.  'RF01055 - Molybdenum Cofactor riboswitch'
10. 'RF01727 - SAM/SAH Riboswitch'
11. 'RF01482 - Abocbl Riboswitch'
12. 'RF03057 - nhaA-I RNA'
13. 'RF01734 - Fluroride riboswitch'
14. 'RF00167 - Purine Riboswitch'
15. 'RF00234 - glmS glucosamine-6-phosphate activated ribozyme'
16. 'RF01739 - Glutamine riboswitch'
17. 'RF03072 - raiA RNA'
18. 'RF03058 - sul RNA'
19. 'RF00380 - yKoK leader'
20. 'RF00168 - Lysine Riboswitch'
21. 'RF03071 - DUF1646 RNA'
22. 'RF01689 - Abocbl variant RNA'
23. 'RF00379 - ydaO/yuaA leader'
24. 'RF00634 - S-adenosyl methionine (SAM) riboswitch'
25. 'RF01767 - SMK box translational riboswitch (SAM-III)'
26. 'RF00080 - yybP-ykoY manganese riboswitch'
27. 'RF02683 - NiCo riboswitch'
28. 'RF00442 - Guanidine-I Riboswitch'
29. 'RF00522 - PreQ1 Riboswitch'
30. 'RF00050 - FMN Riboswitch'
31. 'RF01831 - THF riboswitch'
32. 'RF00521 - SAM riboswitch (alpha-proteobacteria)'

Additional information

For more information, please refer to our manuscript below.

Premkumar KAR, Bharanikumar R, Palaniappan A. (2019) Classifying riboswitches with >99% accuracy. Microorganisms (to be submitted)

Please cite us if you use our services.

Package Structure

.
├── build                       # Buildout project configuration
├── dist                        # Consists of  .whl and .tar package files
├── riboflow                    # Package Directory
│   ├── __init__.py             # main file
│   ├── rnn_32_model.h5         # Bi-directional Recurent Neural Network Model
├── riboflow.egg-info           # Egg information of the project
├── LICENSE                     # License
├── MANIFEST.in                 # To include the Bi-directional Recurent Neural Network Model within the package
├── README.md                   # Package description
└── setup.py                    # Package metadata

References and acknowledgements for pypi package development

Authors

Copyright & License

Copyright (c) 2019, the Authors. MIT License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

riboflow-1.1.2.tar.gz (1.7 MB view details)

Uploaded Source

Built Distribution

riboflow-1.1.2-py3-none-any.whl (3.4 MB view details)

Uploaded Python 3

File details

Details for the file riboflow-1.1.2.tar.gz.

File metadata

  • Download URL: riboflow-1.1.2.tar.gz
  • Upload date:
  • Size: 1.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.18.4 setuptools/36.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.5.2

File hashes

Hashes for riboflow-1.1.2.tar.gz
Algorithm Hash digest
SHA256 6c0b36e0bf1525d1aeccd8de38134c446a5669b2f778e6c42eb1ad6c8babd40f
MD5 641528e0753d1aadedc98d435b9e9ac6
BLAKE2b-256 78ae09b5586dc843ab3229443364563b25042afe1b3e880fc154781493f2822a

See more details on using hashes here.

File details

Details for the file riboflow-1.1.2-py3-none-any.whl.

File metadata

  • Download URL: riboflow-1.1.2-py3-none-any.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.18.4 setuptools/36.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.5.2

File hashes

Hashes for riboflow-1.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 c9538aacdb821a35b010f9d5f2775a7959894e0327747f10c9f462654f99e011
MD5 a5bad470a099e828e19b11700cb4d8d9
BLAKE2b-256 e4d192cfc2f5ad142d59ebab4d0711db75a89889d28ca61de34f68b59caf2e36

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page