Skip to main content

No project description provided

Project description

Yolov5 support for Rikai

rikai-yolov5 integrates Yolov5 implemented in PyTorch with Rikai. It is based on the packaged ultralytics/yolov5.

Notebooks

  • Open In Colab Using Rikai to analyze an image from Jay Chou's Mojito.

Usage

There are two ways to use rikai-yolov5.

rikai.mlflow.pytorch.log_model(
    model,
    "model",
    OUTPUT_SCHEMA,
    registered_model_name=registered_model_name,
    model_type="yolov5",
)

Another way is setting the model_type in Rikai SQL:

CREATE MODEL mlflow_yolov5_m
MODEL_TYPE yolov5
OPTIONS (
  device='cpu'
)
USING 'mlflow:///{registered_model_name}';

Available Options

Name Default Value Description
conf_thres 0.25 NMS confidence threshold
iou_thres 0.45 NMS IoU threshold
max_det 1000 maximum number of detections per image
image_size 640 Image width

Here is a sample usage of the above options:

CREATE MODEL mlflow_yolov5_m
OPTIONS (
  device='cpu',
  iou_thres=0.5
)
USING 'mlflow:///{registered_model_name}';

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rikai-yolov5-0.1.2.tar.gz (8.3 kB view details)

Uploaded Source

Built Distribution

rikai_yolov5-0.1.2-py3-none-any.whl (9.2 kB view details)

Uploaded Python 3

File details

Details for the file rikai-yolov5-0.1.2.tar.gz.

File metadata

  • Download URL: rikai-yolov5-0.1.2.tar.gz
  • Upload date:
  • Size: 8.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for rikai-yolov5-0.1.2.tar.gz
Algorithm Hash digest
SHA256 81515e2871c136e4a796884e51f8c056d3eb73ff9368b8b6fc160a3ba1f270ae
MD5 90ac3faa4f7a76831bfcc4930abb9b13
BLAKE2b-256 c81b4524c30921726a513b30afe520a9e1391cdf2330b0a88c6227ffe67a7972

See more details on using hashes here.

File details

Details for the file rikai_yolov5-0.1.2-py3-none-any.whl.

File metadata

File hashes

Hashes for rikai_yolov5-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 56196aeac23173e13940085c5dc9556ca635e9f5b75ceda1a23ac4307d355963
MD5 771c81b505a03aa964da548fd8af4280
BLAKE2b-256 7a6a9b081067fe317b64c7cc24af571dee0502b31cfc23955edcd53aa2fcd163

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page