No project description provided
Project description
Yolov5 support for Rikai
rikai-yolov5
integrates Yolov5 implemented in PyTorch with Rikai. It is based
on the packaged ultralytics/yolov5.
Notebooks
Usage
There are two ways to use rikai-yolov5
.
rikai.mlflow.pytorch.log_model(
model,
"model",
OUTPUT_SCHEMA,
registered_model_name=registered_model_name,
model_type="yolov5",
)
Another way is setting the model_type in Rikai SQL:
CREATE MODEL mlflow_yolov5_m
MODEL_TYPE yolov5
OPTIONS (
device='cpu'
)
USING 'mlflow:///{registered_model_name}';
Available Options
Name | Default Value | Description |
---|---|---|
conf_thres | 0.25 | NMS confidence threshold |
iou_thres | 0.45 | NMS IoU threshold |
max_det | 1000 | maximum number of detections per image |
image_size | 640 | Image width |
Here is a sample usage of the above options:
CREATE MODEL mlflow_yolov5_m
OPTIONS (
device='cpu',
iou_thres=0.5
)
USING 'mlflow:///{registered_model_name}';
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
rikai-yolov5-0.1.2.tar.gz
(8.3 kB
view details)
Built Distribution
File details
Details for the file rikai-yolov5-0.1.2.tar.gz
.
File metadata
- Download URL: rikai-yolov5-0.1.2.tar.gz
- Upload date:
- Size: 8.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 81515e2871c136e4a796884e51f8c056d3eb73ff9368b8b6fc160a3ba1f270ae |
|
MD5 | 90ac3faa4f7a76831bfcc4930abb9b13 |
|
BLAKE2b-256 | c81b4524c30921726a513b30afe520a9e1391cdf2330b0a88c6227ffe67a7972 |
File details
Details for the file rikai_yolov5-0.1.2-py3-none-any.whl
.
File metadata
- Download URL: rikai_yolov5-0.1.2-py3-none-any.whl
- Upload date:
- Size: 9.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 56196aeac23173e13940085c5dc9556ca635e9f5b75ceda1a23ac4307d355963 |
|
MD5 | 771c81b505a03aa964da548fd8af4280 |
|
BLAKE2b-256 | 7a6a9b081067fe317b64c7cc24af571dee0502b31cfc23955edcd53aa2fcd163 |