The ultimate cache with built-in memcache & redis + asyncio support.
Project description
asyncio support!
Take an explicit but fully automated cache. Ring decorators convert your functions to cached version of them, with extra control methods.
Function cache
import ring
import memcache
import requests
mc = memcache.Client(['127.0.0.1:11211'])
# working for mc, expire in 60sec
@ring.func.memcache(mc, time=60)
def get_url(url):
return requests.get(url).content
# normal way - it is cached
data = get_url('http://example.com')
# delete the cache
get_url.delete('http://example.com')
# get cached data or None
data_or_none = get_url.get('http://example.com')
# get internal cache key
key = get_url.key('http://example.com')
# and access directly to the backend
direct_data = mc.get(key)
Method cache
import ring
import redis
rc = redis.StrictRedis()
class User(dict):
def __ring_key__(self):
return self['id']
# working for rc, no expiration
# using json coder for non-bytes cache data
@ring.func.redis(rc, coder='json')
def data(self):
return self.copy()
# parameters are also ok!
@ring.func.redis(rc, coder='json')
def child(self, child_id):
return {'user_id': self['id'], 'child_id': child_id}
user = User(id=42, name='Ring')
# create and get cache
user_data = user.data() # cached
user['name'] = 'Ding'
# still cached
cached_data = user.data()
assert user_data == cached_data
# refresh
updated_data = user.data.update()
assert user_data != updated_data
# id is the cache key so...
user2 = User(id=42)
# still hitting the same cache
assert user_data == user2.data()
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
ring-0.2.2.tar.gz
(9.5 kB
view hashes)
Built Distributions
ring-0.2.2-py3-none-any.whl
(12.8 kB
view hashes)
ring-0.2.2-py2.py3-none-any.whl
(12.8 kB
view hashes)
ring-0.2.2-py2-none-any.whl
(12.8 kB
view hashes)