Skip to main content

Windowed multiprocessing wrapper for rasterio

Project description


Parallel processing wrapper for rasterio

|PyPI| |Build Status| |Coverage Status|


From pypi:

``pip install rio-mucho``

From github (usually for a branch / dev):

``pip install pip install git+ssh://<branch>#egg=riomucho``



git clone
cd rio-mucho
pip install -e .


.. code:: python

with riomucho.RioMucho([{inputs}], {output}, {run function},
global_args={global arguments},
options={options to write}) as rios:{processes})



An list of file paths to open and read.


What file to write to.


A function to be applied to each window chunk. This should have input
arguments of:

1. A data input, which can be one of:

- A list of numpy arrays of shape (x,y,z), one for each file as
specified in input file list ``mode="simple_read" [default]``
- A numpy array of shape ({*n* input files x *n* band count}, {window
rows}, {window cols}) ``mode=array_read"``
- A list of open sources for reading ``mode="manual_read"``

2. A ``rasterio`` window tuple
3. A ``rasterio`` window index (``ij``)
4. A global arguments object that you can use to pass in global

This should return:

1. An output array of ({count}, {window rows}, {window cols}) shape, and
of the correct data type for writing

.. code:: python

def basic_run({data}, {window}, {ij}, {global args}):
## do something
return {out}

Keyword arguments


A list of ``rasterio`` (window, ij) tuples to operate on.
``[Default = src[0].block_windows()]``

``global_args={global arguments}``

Since this is working in parallel, any other objects / values that you
want to be accessible in the ``run_function``. ``[Default = {}]``

.. code:: python

global_args = {
'divide_value': 2

``options={keyword args}``

The options to pass to the writing output. ``[Default = srcs[0].meta``


.. code:: python

import riomucho, rasterio, numpy

def basic_run(data, window, ij, g_args):
## do something
out = np.array(
[d[0] /= global_args['divide'] for d in data]
return out

# get windows from an input
with'/tmp/test_1.tif') as src:
## grabbing the windows as an example. Default behavior is identical.
windows = [[window, ij] for ij, window in src.block_windows()]
options = src.meta
# since we are only writing to 2 bands

global_args = {
'divide': 2

processes = 4

# run it
with riomucho.RioMucho(['input1.tif','input2.tif'], 'output.tif', basic_run,
options=options) as rm:

Utility functions

\`riomucho.utils.array\_stack([array, array, array,...])

Given a list of ({depth}, {rows}, {cols}) numpy arrays, stack into a
single (l{list length \* each image depth}, {rows}, {cols}) array. This
is useful for handling variation between ``rgb`` inputs of a single
file, or separate files for each.

One RGB file

.. code:: python

files = ['rgb.tif']
open_files = [ for f in files]
rgb = `riomucho.utils.array_stack([ for src in open_files])

Separate RGB files

.. code:: python

files = ['r.tif', 'g.tif', 'b.tif']
open_files = [ for f in files]
rgb = `riomucho.utils.array_stack([ for src in open_files])

.. |PyPI| image::
.. |Build Status| image::
.. |Coverage Status| image::

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rio-mucho-1.0.0.tar.gz (5.8 kB view hashes)

Uploaded source

Built Distributions

rio_mucho-1.0.0-py3-none-any.whl (5.8 kB view hashes)

Uploaded py3

rio_mucho-1.0.0-py2-none-any.whl (5.8 kB view hashes)

Uploaded py2

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page