Skip to main content

Windowed multiprocessing wrapper for rasterio

Project description

Parallel processing wrapper for rasterio

Build Status


From pypi:

pip install rio-mucho --pre

From github (usually for a branch / dev):

pip install pip install git+ssh://<branch>


git clone
cd rio-mucho
pip install -e .


with riomucho.RioMucho([{inputs}], {output}, {run function},
    global_args={global arguments},
    kwargs={kwargs to write}) as rios:{processes})



An list of file paths to open and read.


What file to write to.


A function to be applied to each window chunk. This should have input arguments of:

  1. A data input, which can be one of:
  • A list of numpy arrays of shape (x,y,z), one for each file as specified in input file list mode="simple_read" [default]
  • A numpy array of shape ({n input files x n band count}, {window rows}, {window cols}) mode=array_read"
  • A list of open sources for reading mode="manual_read"
  1. A rasterio window tuple
  2. A rasterio window index (ij)
  3. A global arguments object that you can use to pass in global arguments

This should return:

  1. An output array of ({count}, {window rows}, {window cols}) shape, and of the correct data type for writing
def basic_run({data}, {window}, {ij}, {global args}):
    ## do something
    return {out}

Keyword arguments


A list of rasterio (window, ij) tuples to operate on. [Default = src[0].block_windows()]

global_args={global arguments}

Since this is working in parallel, any other objects / values that you want to be accessible in the run_function. [Default = {}]

global_args = {
    'divide_value': 2

kwargs={keyword args}

The kwargs to pass to the output. [Default = srcs[0].kwargs


import riomucho, rasterio, numpy

def basic_run(data, window, ij, g_args):
    ## do something
    out = np.array(
        [d[0] /= global_args['divide'] for d in data]
    return out

# get windows from an input
with'/tmp/test_1.tif') as src:
    ## grabbing the windows as an example. Default behavior is identical.
    windows = [[window, ij] for ij, window in src.block_windows()]
    kwargs = src.meta
    # since we are only writing to 2 bands

global_args = {
    'divide': 2

processes = 4

# run it
with riomucho.RioMucho(['input1.tif','input2.tif'], 'output.tif', basic_run,
    kwargs=kwargs) as rm:

Utility functions

`riomucho.utils.array_stack([array, array, array,…])

Given a list of ({depth}, {rows}, {cols}) numpy arrays, stack into a single (l{list length * each image depth}, {rows}, {cols}) array. This is useful for handling variation between rgb inputs of a single file, or separate files for each.

One RGB file

files = ['rgb.tif']
open_files = [ for f in files]
rgb = `riomucho.utils.array_stack([ for src in open_files])

Separate RGB files

files = ['r.tif', 'g.tif', 'b.tif']
open_files = [ for f in files]
rgb = `riomucho.utils.array_stack([ for src in open_files])

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for rio-mucho, version 0.0.2.dev0
Filename, size File type Python version Upload date Hashes
Filename, size rio-mucho-0.0.2.dev0.tar.gz (4.4 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page