Get mercator tile from cloud hosted dataset such as CBERS-4, Sentinel-2, Sentinel-1 and Landsat-8 AWS PDS
Project description
Rio-Tiler-PDS: A rio-tiler plugin for Public Datasets
A rio-tiler plugin to read from publicly-available datasets.
Important This is the new module for rio-tiler missions specific (ref: https://github.com/cogeotiff/rio-tiler/issues/195)
Documentation: https://cogeotiff.github.io/rio-tiler-pds/
Source Code: https://github.com/cogeotiff/rio-tiler-pds
Installation
You can install rio-tiler-pds using pip
$ pip install -U pip
$ pip install rio-tiler-pds
or install from source:
pip install git+https://github.com/tangentlabs/django-oscar-paypal.git@issue/34/oscar-0.6
$ pip install -U pip
$ pip install git+https://github.com/cogeotiff/rio-tiler-pds.git
Datasets
Data | Level | Format | Owner | Region | Bucket Type | Link |
---|---|---|---|---|---|---|
Sentinel 2 | L1C | JPEG2000 | Sinergise / AWS | eu-central-1 | Requester-pays | https://registry.opendata.aws/sentinel-2/ |
Sentinel 2 | L2A | JPEG2000 | Sinergise / AWS | eu-central-1 | Requester-pays | https://registry.opendata.aws/sentinel-2/ |
Sentinel 2 | L2A | COG | Digital Earth Africa / AWS | us-west-2 | Public | https://www.digitalearthafrica.org/news/operational-and-ready-use-satellite-data-now-available-across-africa |
Sentinel 1 | L1C | COG (Internal GCPS) | Sinergise / AWS | eu-central-1 | Requester-pays | https://registry.opendata.aws/sentinel-1/ |
Landsat 8 | L1 | GTiff (External Overviews) | Planet / AWS | us-west-2 | Public | https://registry.opendata.aws/landsat-8/ |
CBERS 4 | L1 | COG | AMS Kepler / AWS | us-east-1 | Public | https://registry.opendata.aws/cbers/ |
Adding more dataset:
If you know of another publicly-available dataset that can easily be described with a "scene id", please feel free to open an issue.
Warnings
Requester-pays Buckets
On AWS, sentinel2
, sentinel1
, and cbers
datasets are stored in requester
pays
buckets. This means that the cost of GET and LIST requests and egress fees for
downloading files outside the AWS region will be charged to the accessing
users, not the organization hosting the bucket. For rio-tiler
and
rio-tiler-pds
to work with such buckets, you'll need to set
AWS_REQUEST_PAYER="requester"
in your shell environment.
Partial reading on Cloud hosted dataset
When reading data, rio-tiler-pds
performs partial reads when possible. Hence
performance will be best on data stored as Cloud Optimized GeoTIFF
(COG). It's important to note that Sentinel-2 scenes hosted
on AWS are not in Cloud Optimized format but in JPEG2000. Partial reads from
JPEG2000 files are inefficient, and GDAL (the library underlying rio-tiler-pds
and rasterio
) will need to make many GET requests and transfer a lot of
data. This will be both slow and expensive, since AWS's JPEG2000 collection of
Sentinel 2 data is stored in a requester pays bucket.
Ref: Do you really want people using your data blog post.
Overview
Readers
Each dataset has its own submodule (e.g sentinel2: rio_tiler_pds.sentinel.aws
)
from rio_tiler_pds.landsat.aws import L8Reader
from rio_tiler_pds.sentinel.aws import S1L1CReader
from rio_tiler_pds.sentinel.aws import (
S2L1CReader, # JPEG2000
S2L2AReader, # JPEG2000
S2L2ACOGReader, # COG
)
from rio_tiler_pds.cbers.aws import CBERSReader
All Readers are subclass of rio_tiler.io.BaseReader
and inherit its properties/methods.
Properties
- bounds: Scene bounding box
- minzoom: WebMercator MinZoom (e.g 7 for Landsat8)
- maxzoom: WebMercator MaxZoom (e.g 12 for Landsat8)
- center: Scene center
- spatial_info: zooms, bounds and center
Methods
- info: Returns band's simple info (e.g nodata, band_descriptions, ....)
- stats: Returns band's statistics (percentile, histogram, ...)
- metadata: info + stats
- tile: Read web mercator map tile from bands
- part: Extract part of bands
- preview: Returns a low resolution preview from bands
- point: Returns band's pixel value for a given lon,lat
Other
- bands (property): List of available bands for each dataset
Scene ID
All readers take scene id as main input. The scene id is used internaly by the reader to derive the full path of the data.
e.g: Landsat on AWS
Because the Landsat AWS PDS follows a regular schema to store the data (s3://{bucket}/c1/L8/{path}/{row}/{scene}/{scene}_{band}.TIF"
), we can easily reconstruct the full band's path by parsing the scene id.
from rio_tiler_pds.landsat.aws import L8Reader
from rio_tiler_pds.landsat.utils import sceneid_parser
sceneid_parser("LC08_L1TP_016037_20170813_20170814_01_RT")
> {
'sensor': 'C',
'satellite': '08',
'processingCorrectionLevel': 'L1TP',
'path': '016',
'row': '037',
'acquisitionYear': '2017',
'acquisitionMonth': '08',
'acquisitionDay': '13',
'processingYear': '2017',
'processingMonth': '08',
'processingDay': '14',
'collectionNumber': '01',
'collectionCategory': 'RT',
'scene': 'LC08_L1TP_016037_20170813_20170814_01_RT',
'date': '2017-08-13'
}
with L8Reader("LC08_L1TP_016037_20170813_20170814_01_RT") as landsat:
print(landsat._get_band_url("B1"))
> s3://landsat-pds/c1/L8/016/037/LC08_L1TP_016037_20170813_20170814_01_RT/LC08_L1TP_016037_20170813_20170814_01_RT_B1.TIF
Each dataset has a specific scene id format:
-
Landsat
- link: rio_tiler_pds.landsat.utils.sceneid_parser
- regex:
^L[COTEM]0[0-9]_L\d{1}[A-Z]{2}_\d{6}_\d{8}_\d{8}_\d{2}_(T1|T2|RT)$
- example:
LC08_L1TP_016037_20170813_20170814_01_RT
-
Sentinel 1 L1C
- link: rio_tiler_pds.sentinel.utils.s1_sceneid_parser
- regex:
^S1[AB]_(IW)|(EW)_[A-Z]{3}[FHM]_[0-9][SA][A-Z]{2}_[0-9]{8}T[0-9]{6}_[0-9]{8}T[0-9]{6}_[0-9A-Z]{6}_[0-9A-Z]{6}_[0-9A-Z]{4}$
- example:
S1A_IW_GRDH_1SDV_20180716T004042_20180716T004107_022812_02792A_FD5B
-
Sentinel 2 JPEG2000 and Sentinel 2 COG
- link: rio_tiler_pds.sentinel.utils.s2_sceneid_parser
- regex:
^S2[AB]_[0-9]{2}[A-Z]{3}_[0-9]{8}_[0-9]_L[0-2][A-C]$
or^S2[AB]_L[0-2][A-C]_[0-9]{8}_[0-9]{2}[A-Z]{3}_[0-9]$
- example:
S2A_29RKH_20200219_0_L2A
,S2A_L1C_20170729_19UDP_0
,S2A_L2A_20170729_19UDP_0
-
CBERS
- link: rio_tiler_pds.cbers.utils.sceneid_parser
- regex:
^CBERS_4_\w+_[0-9]{8}_[0-9]{3}_[0-9]{3}_L[0-9]$
- example:
CBERS_4_MUX_20171121_057_094_L2
,CBERS_4_AWFI_20170420_146_129_L2
,CBERS_4_PAN10M_20170427_161_109_L4
,CBERS_4_PAN5M_20170425_153_114_L4
Band Per Asset/File
rio-tiler-pds
Readers assume that bands (e.g eo:band in STAC) are stored in separate files.
$ aws s3 ls landsat-pds/c1/L8/013/031/LC08_L1TP_013031_20130930_20170308_01_T1/
LC08_L1TP_013031_20130930_20170308_01_T1_B1.TIF
LC08_L1TP_013031_20130930_20170308_01_T1_B10.TIF
LC08_L1TP_013031_20130930_20170308_01_T1_B11.TIF
LC08_L1TP_013031_20130930_20170308_01_T1_B2.TIF
LC08_L1TP_013031_20130930_20170308_01_T1_B3.TIF
LC08_L1TP_013031_20130930_20170308_01_T1_B4.TIF
LC08_L1TP_013031_20130930_20170308_01_T1_B5.TIF
LC08_L1TP_013031_20130930_20170308_01_T1_B6.TIF
LC08_L1TP_013031_20130930_20170308_01_T1_B7.TIF
LC08_L1TP_013031_20130930_20170308_01_T1_B8.TIF
LC08_L1TP_013031_20130930_20170308_01_T1_B9.TIF
LC08_L1TP_013031_20130930_20170308_01_T1_BQA.TIF
When reading data or metadata, readers will merge them.
e.g
with S2L1CReader("S2A_L1C_20170729_19UDP_0") as sentinel:
tile, mask = sentinel.tile(77, 89, 8, bands=("B01", "B02")
assert tile.shape == (2, 256, 256)
print(sentinel.stats(bands=("B8A", "B02")))
> {
'B8A': {
'pc': [106, 9322],
'min': 1,
'max': 13659,
'std': 2682.6511198930048,
'histogram': [
[261631, 52188, 137746, 98039, 41066, 30818, 21095, 8631, 1442, 105],
[1.0, 1366.8, 2732.6, 4098.4, 5464.2, 6830.0, 8195.8, 9561.6, 10927.4, 12293.199999999999, 13659.0]
]
},
'B02': {
...
}
}
Changes
See CHANGES.md.
Contribution & Development
See CONTRIBUTING.md
License
See LICENSE.txt
Authors
The rio-tiler project was begun at Mapbox and has been transferred in January 2019.
See AUTHORS.txt for a listing of individual contributors.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file rio-tiler-pds-0.2.0.tar.gz
.
File metadata
- Download URL: rio-tiler-pds-0.2.0.tar.gz
- Upload date:
- Size: 19.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1dc27a2305eb1bef9afc495d122dfdac863808f57561a6c226cf0b10575975be |
|
MD5 | 88d808213cb6150b501fd74954b4adc8 |
|
BLAKE2b-256 | 1e3b2e7d475d4f2d55b622342966b02639eeee421fe6e72418098a35d92fae1c |