Skip to main content

Get mercator tile from landsat, sentinel or other AWS hosted raster

Project description

Rasterio plugin to create mercator tiles from raster sources.

https://circleci.com/gh/mapbox/rio-tiler.svg?style=svg&circle-token=b78bc1a238c21046a855a9c80b441a8f2f9a4478 https://codecov.io/gh/mapbox/rio-tiler/branch/master/graph/badge.svg?token=zuHupC20cG

Additional support is provided for the following satellite missions:

  • Sentinel 2

  • Landsat 8

  • CBERS

Rio-tiler supports Python 2.7 and 3.3-3.6.

Install

You can install rio-tiler using pip

$ pip install -U pip
$ pip install rio-tiler

or install from source:

$ git clone https://github.com/mapbox/rio-tiler.git
$ cd rio-tiler
$ pip install -U pip
$ pip install -e .

here is how to create an AWS Lambda package on most UNIX machines:

# On a centos machine
$ pip install rio-tiler --no-binary numpy -t /tmp/vendored -U
$ zip -r9q package.zip vendored/*

Overview

Create tiles using one of these rio_tiler modules: main, sentinel2, landsat8, cbers.

The main module can create mercator tiles from any raster source supported by Rasterio (i.e. local files, http, etc.). The mission specific modules make it easier to extract tiles from AWS S3 buckets (i.e. only a scene ID is required); They can also be used to return metadata.

All of the tiling modules can return the original image bounds.

Usage

Get a Sentinel2 tile and its mask (if any).

from rio_tiler import sentinel2
tile, mask = sentinel2.tile('S2A_tile_20170729_19UDP_0', 77, 89, 8)
tile.shape
# (3, 256, 256)

Create image from tile

from rio_tiler.utils import array_to_img
img = array_to_img(tile, mask=mask) # this returns a pillow image

Convert image into base64 encoded string (PNG or JPEG)

from rio_tiler.utils import b64_encode_img
str_img = b64_encode_img(img, 'jpeg')

Get bounds for a Landsat scene (WGS84).

from rio_tiler import landsat8
landsat8.bounds('LC08_L1TP_016037_20170813_20170814_01_RT')
# {'bounds': [-81.30836, 32.10539, -78.82045, 34.22818],
#  'sceneid': 'LC08_L1TP_016037_20170813_20170814_01_RT'}

Get metadata of a Landsat scene (i.e. percentinle min and max values, and bounds in WGS84) .

from rio_tiler import landsat8
landsat8.metadata('LC08_L1TP_016037_20170813_20170814_01_RT', pmin=5, pmax=95)
#  {'bounds': [-81.30836, 32.10539, -78.82045, 34.22818],
#   'rgbMinMax': {'1': [1245, 5396],
#    '2': [983, 5384],
#    '3': [718, 5162],
#    '4': [470, 5273],
#    '5': [403, 6440],
#    '6': [258, 4257],
#    '7': [151, 2984]},
#   'sceneid': 'LC08_L1TP_016037_20170813_20170814_01_RT'}

The primary purpose for calculating minimum and maximum values of an image is to rescale pixel values from their original range (e.g. 0 to 65,535) to the range used by computer screens (i.e. 0 and 255) through a linear transformation. This will make images look good on display.

The Datasets

License

See LICENSE.txt.

Authors

See AUTHORS.txt.

Changes

See CHANGES.txt.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rio_tiler-1.0a7.tar.gz (13.4 kB view details)

Uploaded Source

File details

Details for the file rio_tiler-1.0a7.tar.gz.

File metadata

  • Download URL: rio_tiler-1.0a7.tar.gz
  • Upload date:
  • Size: 13.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for rio_tiler-1.0a7.tar.gz
Algorithm Hash digest
SHA256 19b6d16952fc5dcb2c39287bea55ab7394372b7b64bd89d5e9996bbd08c20421
MD5 70913f3c28cbf1d191be8af6cf8834b6
BLAKE2b-256 f9c9cdef0f3a2ade06e522d6761682375d622688a86310ec8365638668199bf2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page