Skip to main content

Get mercator tile from landsat, sentinel or other AWS hosted raster

Project description

Rasterio plugin to create mercator tiles from raster sources.

https://circleci.com/gh/mapbox/rio-tiler.svg?style=svg&circle-token=b78bc1a238c21046a855a9c80b441a8f2f9a4478 https://codecov.io/gh/mapbox/rio-tiler/branch/master/graph/badge.svg?token=zuHupC20cG

Additional support is provided for the following satellite missions:

  • Sentinel 2

  • Landsat 8

  • CBERS

Rio-tiler supports Python 2.7 and 3.3-3.6.

Install

You can install rio-tiler using pip

$ pip install -U pip
$ pip install rio-tiler

or install from source:

$ git clone https://github.com/mapbox/rio-tiler.git
$ cd rio-tiler
$ pip install -U pip
$ pip install -e .

here is how to create an AWS Lambda package on most UNIX machines:

# On a centos machine
$ pip install rio-tiler --no-binary numpy -t /tmp/vendored -U
$ zip -r9q package.zip vendored/*

Overview

Create tiles using one of these rio_tiler modules: main, sentinel2, landsat8, cbers.

The main module can create mercator tiles from any raster source supported by Rasterio (i.e. local files, http, etc.). The mission specific modules make it easier to extract tiles from AWS S3 buckets (i.e. only a scene ID is required); They can also be used to return metadata.

All of the tiling modules can return the original image bounds.

Usage

Get a Sentinel2 tile and its mask (if any).

from rio_tiler import sentinel2
tile, mask = sentinel2.tile('S2A_tile_20170729_19UDP_0', 77, 89, 8)
tile.shape
# (3, 256, 256)

Create image from tile

from rio_tiler.utils import array_to_img
img = array_to_img(tile, mask=mask) # this returns a pillow image

Convert image into base64 encoded string (PNG or JPEG)

from rio_tiler.utils import b64_encode_img
str_img = b64_encode_img(img, 'jpeg')

Get bounds for a Landsat scene (WGS84).

from rio_tiler import landsat8
landsat8.bounds('LC08_L1TP_016037_20170813_20170814_01_RT')
# {'bounds': [-81.30836, 32.10539, -78.82045, 34.22818],
#  'sceneid': 'LC08_L1TP_016037_20170813_20170814_01_RT'}

Get metadata of a Landsat scene (i.e. percentinle min and max values, and bounds in WGS84) .

from rio_tiler import landsat8
landsat8.metadata('LC08_L1TP_016037_20170813_20170814_01_RT', pmin=5, pmax=95)
#  {'bounds': [-81.30836, 32.10539, -78.82045, 34.22818],
#   'rgbMinMax': {'1': [1245, 5396],
#    '2': [983, 5384],
#    '3': [718, 5162],
#    '4': [470, 5273],
#    '5': [403, 6440],
#    '6': [258, 4257],
#    '7': [151, 2984]},
#   'sceneid': 'LC08_L1TP_016037_20170813_20170814_01_RT'}

The primary purpose for calculating minimum and maximum values of an image is to rescale pixel values from their original range (e.g. 0 to 65,535) to the range used by computer screens (i.e. 0 and 255) through a linear transformation. This will make images look good on display.

The Datasets

License

See LICENSE.txt.

Authors

See AUTHORS.txt.

Changes

See CHANGES.txt.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rio_tiler-1.0a8.tar.gz (13.4 kB view details)

Uploaded Source

File details

Details for the file rio_tiler-1.0a8.tar.gz.

File metadata

  • Download URL: rio_tiler-1.0a8.tar.gz
  • Upload date:
  • Size: 13.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for rio_tiler-1.0a8.tar.gz
Algorithm Hash digest
SHA256 12dba0326b45274aa4a61efa384ab6d7066eb84c4dc5e5b1aa8cb2ca1149f11e
MD5 6ddf25c1dae69f8b1867f4e107104115
BLAKE2b-256 12808a7dd7950b78221a6e62c20e3bf5d3fc8547b3fb1414a2cc0991b9221dae

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page