Skip to main content

User friendly Rasterio plugin to read raster datasets.

Project description

rio-tiler

rio-tiler

User friendly Rasterio plugin to read raster datasets.

Test Coverage Package version Conda Forge Downloads Downloads Binder


Documentation: https://cogeotiff.github.io/rio-tiler/

Source Code: https://github.com/cogeotiff/rio-tiler


Description

rio-tiler was initially designed to create slippy map tiles from large raster data sources and render these tiles dynamically on a web map. Since rio-tiler v2.0, we added many more helper methods to read data and metadata from any raster source supported by Rasterio/GDAL. This includes local and remote files via HTTP, AWS S3, Google Cloud Storage, etc.

At the low level, rio-tiler is just a wrapper around the rasterio and GDAL libraries.

Features

  • Read any dataset supported by GDAL/Rasterio

    from rio_tiler.io import Reader
    
    with Reader("my.tif") as image:
        print(image.dataset)  # rasterio opened dataset
        img = image.read()    # similar to rasterio.open("my.tif").read() but returns a rio_tiler.models.ImageData object
    
  • User friendly tile, part, feature, point reading methods

    from rio_tiler.io import Reader
    
    with Reader("my.tif") as image:
        img = image.tile(x, y, z)            # read mercator tile z-x-y
        img = image.part(bbox)               # read the data intersecting a bounding box
        img = image.feature(geojson_feature) # read the data intersecting a geojson feature
        img = image.point(lon,lat)           # get pixel values for a lon/lat coordinates
    
  • Enable property assignment (e.g nodata) on data reading

    from rio_tiler.io import Reader
    
    with Reader("my.tif") as image:
        img = image.tile(x, y, z, nodata=-9999) # read mercator tile z-x-y
    
  • STAC support

    from rio_tiler.io import STACReader
    
    with STACReader("item.json") as stac:
        print(stac.assets)  # available asset
        img = stac.tile(  # read tile for asset1 and indexes 1,2,3
            x,
            y,
            z,
            assets="asset1",
            indexes=(1, 2, 3),  # same as asset_indexes={"asset1": (1, 2, 3)},
        )
    
        # Merging data from different assets
        img = stac.tile(  # create an image from assets 1,2,3 using their first band
            x,
            y,
            z,
            assets=("asset1", "asset2", "asset3",),
            asset_indexes={"asset1": 1, "asset2": 1, "asset3": 1},
        )
    
  • Xarray support (>=4.0)

    import xarray
    from rio_tiler.io import XarrayReader
    
    ds = xarray.open_dataset(
        "https://pangeo.blob.core.windows.net/pangeo-public/daymet-rio-tiler/na-wgs84.zarr/",
        engine="zarr",
        decode_coords="all",
        consolidated=True,
    )
    da = ds["tmax"]
    with XarrayReader(da) as dst:
        print(dst.info())
        img = dst.tile(1, 1, 2)
    

    Note: The XarrayReader needs optional dependencies to be installed pip install rio-tiler["xarray"].

  • Non-Geo Image support (>=4.0)

    from rio_tiler.io import ImageReader
    
    with ImageReader("image.jpeg") as src:
        im = src.tile(0, 0, src.maxzoom)  # read top-left `tile`
        im = src.part((0, 100, 100, 0))  # read top-left 100x100 pixels
        pt = src.point(0, 0)  # read pixel value
    

    Note: ImageReader is also compatible with proper geo-referenced raster datasets.

  • Mosaic (merging or stacking)

    from rio_tiler.io import Reader
    from rio_tiler.mosaic import mosaic_reader
    
    def reader(file, x, y, z, **kwargs):
        with Reader(file) as image:
            return image.tile(x, y, z, **kwargs)
    
    img, assets = mosaic_reader(["image1.tif", "image2.tif"], reader, x, y, z)
    
  • Native support for multiple TileMatrixSet via morecantile

    import morecantile
    from rio_tiler.io import Reader
    
    # Use EPSG:4326 (WGS84) grid
    wgs84_grid = morecantile.tms.get("WorldCRS84Quad")
    with Reader("my.tif", tms=wgs84_grid) as src:
        img = src.tile(1, 1, 1)
    

Install

You can install rio-tiler using pip

$ python -m pip install -U pip
$ python -m pip install -U rio-tiler

or install from source:

$ git clone https://github.com/cogeotiff/rio-tiler.git
$ cd rio-tiler
$ python -m pip install -U pip
$ python -m pip install -e .

Plugins

rio-tiler-pds

rio-tiler v1 included several helpers for reading popular public datasets (e.g. Sentinel 2, Sentinel 1, Landsat 8, CBERS) from cloud providers. This functionality is now in a separate plugin, enabling easier access to more public datasets.

rio-tiler-mvt

Create Mapbox Vector Tiles from raster sources

Implementations

titiler: A lightweight Cloud Optimized GeoTIFF dynamic tile server.

cogeo-mosaic: Create mosaics of Cloud Optimized GeoTIFF based on the mosaicJSON specification.

Contribution & Development

See CONTRIBUTING.md

Authors

The rio-tiler project was begun at Mapbox and was transferred to the cogeotiff Github organization in January 2019.

See AUTHORS.txt for a listing of individual contributors.

Changes

See CHANGES.md.

License

See LICENSE

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rio_tiler-7.2.2.tar.gz (172.3 kB view details)

Uploaded Source

Built Distribution

rio_tiler-7.2.2-py3-none-any.whl (265.9 kB view details)

Uploaded Python 3

File details

Details for the file rio_tiler-7.2.2.tar.gz.

File metadata

  • Download URL: rio_tiler-7.2.2.tar.gz
  • Upload date:
  • Size: 172.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.27.2

File hashes

Hashes for rio_tiler-7.2.2.tar.gz
Algorithm Hash digest
SHA256 14306102271f71f943efaf54f4d1db4ac5d4775fa4d71011c4fae958c83a580a
MD5 fd93e84be0ef8244c312b77c0e178c7c
BLAKE2b-256 18c347c66b958090fcb07d19bc871db7547fe5773975b0a7344a2361427eb1bb

See more details on using hashes here.

File details

Details for the file rio_tiler-7.2.2-py3-none-any.whl.

File metadata

  • Download URL: rio_tiler-7.2.2-py3-none-any.whl
  • Upload date:
  • Size: 265.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.27.2

File hashes

Hashes for rio_tiler-7.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 dbce793a3b85e1b817eb2902a85d3218ccb07411804b0c8d978659bf95920ec1
MD5 e46677fc9600fd44cbca3e8af94b7e9f
BLAKE2b-256 8401430205c9099b98f14a3fa406a2197dc4f920061bbb1bb77af06b9b66af8c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page