Skip to main content

A small jax package for differentiable and fast gravitational wave data analysis.

Project description

Ripple

A small jax package for differentiable and fast gravitational wave data analysis.

Getting Started

Installation

Ripple is still in its development stage and therefore has not been made available installable directly through pip yet. Instead, one can install using

git clone git@github.com:tedwards2412/ripple.git
cd ripple
pip3 install .

Generating a waveform and its derivative

Generating a waveform is increadibly easy. Below is an example of calling the PhenomD waveform model to get the h_+ and h_x polarizations of the waveform model

We start with some basic imports:

from math import pi
import jax.numpy as jnp

from ripple.waveforms import IMRPhenomD
import matplotlib.pyplot as plt
from ripple import ms_to_Mc_eta

And now we can just set the parameters and call the waveform!

# Get a frequency domain waveform
# source parameters

m1_msun = 20.0 # In solar masses
m2_msun = 19.0
chi1 = 0.5 # Dimensionless spin
chi2 = -0.5
tc = 0.0 # Time of coalescence in seconds
phic = 0.0 # Time of coalescence
dist_mpc = 440 # Distance to source in Mpc
inclination = 0.0 # Inclination Angle
polarization_angle = 0.2 # Polarization angle

# The PhenomD waveform model is parameterized with the chirp mass and symmetric mass ratio
Mc, eta = ms_to_Mc_eta(jnp.array([m1_msun, m2_msun]))

# These are the parametrs that go into the waveform generator
# Note that JAX does not give index errors, so if you pass in the
# the wrong array it will behave strangely
theta_ripple = jnp.array([Mc, eta, chi1, chi2, dist_mpc, tc, phic, inclination, polarization_angle])

# Now we need to generate the frequency grid
f_l = 24
f_u = 512
del_f = 0.01
fs = jnp.arange(f_l, f_u, del_f)

# And finally lets generate the waveform!
hp_ripple, hc_ripple = IMRPhenomD.gen_IMRPhenomD_polar(fs, theta_ripple)

# Note that we have not internally jitted the functions since this would
# introduce an annoying overhead each time the use evaluated the function with a different length frequency array
# We therefore recommend that the user jit the function themselves to accelerate evaluations. For example

import jax

@jax.jit
def waveform(theta):
    return IMRPhenomD.gen_IMRPhenomD_polar(fs, theta)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ripplegw-0.0.1.tar.gz (425.3 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page