Skip to main content

Alignment-free RNA degradation tool

Project description

=== riqc ===

https://img.shields.io/pypi/v/riqc.svg Documentation Status

Alignment-free RNA degradation tool

  • Free software: MIT license

Installation

The simplest is to install via:

pip install riqc

If you downloaded the code directly, you can also run:

python setup.py install

Usage

Degradation Detection in Aligned Files

Example:

riqc –bam_dir=’…’ –anno_fn=’…’ –out_dir=’…’ –log=’…’

Degradation Detection in Non-Aligned Files

Example:

riqc –fastq_dir=’…’ –genome=’…’ –anno_fn=’…’ –out_dir=’…’ –out_fn=’…’ –pickle_all=’…’ –pickle_filt=’…’ –log=’…’

All Options for Degradation Detection

  • Input options
    • –bam_dir : Directory of bam files where we get a degradation score for every single bam file and one for all (default=’-‘)

    • –bam_fn : Specifies a single bam file as input (default=’-‘)

    • –fastq_dir : Directory of fastq files that will be analysed as one (so for individual degradation scores one has to give a directory with only one file or file-pair) (default=’-‘)

    • –cnt_dir : Directory of pre-produced tab delimited count files (mainly for experimental purposes; the preprocessed file contains all necessary information from the annotation file as well as counts for first and last exon), default=’-’

    • –anno_fn : Path to annotation file (supported formats: gtf, gff, gff3) (default=’-‘)

    • –genome : Path to genome file (supported format: fasta) (default=’-‘)

    • –gene_list : File with gene-names to use (default=’-‘)

    • –separate_files_ON : Consider all input files individually (default=False)

    • sparse_bam_ON : Input BAM files are in sparse hdf5 format (default=False)

  • Output Options
    • –out_dir : Directory to store output in (default=’.’)

    • –out_fn : Prefix for output files (default=’out’)

    • –anno_tmp_fn : Name of file for temporarily storing annotation information (if the name is ‘’ it will automatically be set (in libs/annotation.py) to reflect whether the protein-coding-genes-filter has been used and whether the legacy option was set to True) (default=’’)

    • –pickle_all : Name of pickle file for temporarily storing all kmers (if it is None, the name will automatically be set (in libs/kmer.py) to reflect the chosen length of kmers) (default=None)

    • –pickle_filt : Name of pickle file for temporarily storing filtered/cleaned kmers (if it is None, the name will automatically be set (in libs/kmer.py) to reflect the chosen length of kmers)’, (default=None)

  • General Options
    • –quant : What type of quantification to use (options: rpkm,raw) (default=’raw’)

    • –pseudo_count_ON : Add Pseudocounts to ratio (to also consider genes where we have 0 count on at least one end) (default=False)

    • –length : Only consider the 25% longest (uq), 50% medium (mq), or 25% shortest (lq) genes (default=’uq’)

    • –score_on_bases_ON : Calculate degradation score not from last and first exon but from a certain amount of bases at beginning and end that can be set via –base_number (normalized length) (default=False)

    • –base_number : Number of bases at beginning/end for calculating score (only relevant if –score_on_bases_ON is set) (default=100)

    • –log : Name of log file (default=’out.log’)

    • –verbose_ON : Set logger to verbose (default=False)

    • –plot_ON : Plot figures (default=False)

    • –fn_sample_ratio : Sample Ratios in relation to yours (default=os.path.join(os.path.realpath(__file__).rsplit(‘/’, 1)[:-1][0], ‘data’, ‘sampleRatios/TCGA_sample_a_ratio_uq.tsv’))

    • –mask_filter : Mask all read-counts below this integer (default=’0’)

    • –protein_coding_filter_OFF’ : Only consider genes that are protein-coding (default=True)

    • –length_filter_OFF : Only consider genes of certain length (specified via –length) (default=True)

    • –save_counts_ON : Store the exon counts in .npy and .tsv files for later use (via –cnt_dir) (default=False)

    • –legacy : Switch on some legacy behavior (currently only targeting alternate calculation of transcript length in libs/annotation.py) (default=False)

  • Kmer Options (only relevant if using fastq as input)
    • –kmer_length : Length of k-mer for alignmentfree counting (default=27)

    • –reads_kmer : Required active reads per sample or if in [0, 1] then fraction of input reads considered (default=50000)

    • –step_k : Step-size for k-mer counting (default=4)

Additional Options for Degradation Compensation

  • –scale_counts_ON : Scale counts with pre-computed scaling factors for degradation compensation (gi), default=False

  • –scale_factors_dir : Directory of files containing scaling factors (default=’-‘)

The scaling-factor files can be generated with a command like

python …/degradation_tool/scalingFactors.py –bam_dir=’…’ –anno_fn=’…’ –out_dir=’…’

mainly using the same parameters as for the Degradation Detection with additional:
  • –bins : Number of bins for different gene lengths (default=10)

  • –relative_binning_ON : Have relative (to number of genes) bin boundaries instead of absolute values (default=False)

  • –average_factors_ON : Compute scaling factors by using average (instead of median) per length bin (default=False)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

riqc-0.2.0.tar.gz (28.1 kB view details)

Uploaded Source

Built Distribution

riqc-0.2.0-py2.py3-none-any.whl (27.1 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file riqc-0.2.0.tar.gz.

File metadata

  • Download URL: riqc-0.2.0.tar.gz
  • Upload date:
  • Size: 28.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for riqc-0.2.0.tar.gz
Algorithm Hash digest
SHA256 4555732ebc04839a5a3dfbad5b20e0424ed909189a963a30048b6b19d7a8169c
MD5 e145b07f74e9cfbc2631e218e7e61b2c
BLAKE2b-256 ec10ff9f61f2378b69f72797ce3ad64ccbe29eb213d849306eeeb115943d732e

See more details on using hashes here.

Provenance

File details

Details for the file riqc-0.2.0-py2.py3-none-any.whl.

File metadata

  • Download URL: riqc-0.2.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 27.1 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for riqc-0.2.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 15cf0c4306908b500241a0fb394b6143baeb73c3ea53faa01b6bebeab91efe90
MD5 9a0d0526da2b1b109376172d65cb2bc1
BLAKE2b-256 40b481737aa3c38329f4b29f651c80b9732aa60ddb509784ef521a65a369fa13

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page