Alignment-free RNA degradation tool
Project description
=== riqc ===
Alignment-free RNA degradation tool
Free software: MIT license
Installation
- The simplest is to install via:
pip install riqc
- If you downloaded the code directly, you can also run:
python setup.py install
Usage
Degradation Detection in Aligned Files
- Example:
riqc –bam_dir=’…’ –anno_fn=’…’ –out_dir=’…’ –log=’…’
Degradation Detection in Non-Aligned Files
- Example:
riqc –fastq_dir=’…’ –genome=’…’ –anno_fn=’…’ –out_dir=’…’ –out_fn=’…’ –pickle_all=’…’ –pickle_filt=’…’ –log=’…’
All Options for Degradation Detection
- Input options
–bam_dir : Directory of bam files where we get a degradation score for every single bam file and one for all (default=’-‘)
–bam_fn : Specifies a single bam file as input (default=’-‘)
–fastq_dir : Directory of fastq files that will be analysed as one (so for individual degradation scores one has to give a directory with only one file or file-pair) (default=’-‘)
–cnt_dir : Directory of pre-produced tab delimited count files (mainly for experimental purposes; the preprocessed file contains all necessary information from the annotation file as well as counts for first and last exon), default=’-’
–anno_fn : Path to annotation file (supported formats: gtf, gff, gff3) (default=’-‘)
–genome : Path to genome file (supported format: fasta) (default=’-‘)
–gene_list : File with gene-names to use (default=’-‘)
–separate_files_ON : Consider all input files individually (default=False)
sparse_bam_ON : Input BAM files are in sparse hdf5 format (default=False)
- Output Options
–out_dir : Directory to store output in (default=’.’)
–out_fn : Prefix for output files (default=’out’)
–anno_tmp_fn : Name of file for temporarily storing annotation information (if the name is ‘’ it will automatically be set (in libs/annotation.py) to reflect whether the protein-coding-genes-filter has been used and whether the legacy option was set to True) (default=’’)
–pickle_all : Name of pickle file for temporarily storing all kmers (if it is None, the name will automatically be set (in libs/kmer.py) to reflect the chosen length of kmers) (default=None)
–pickle_filt : Name of pickle file for temporarily storing filtered/cleaned kmers (if it is None, the name will automatically be set (in libs/kmer.py) to reflect the chosen length of kmers)’, (default=None)
- General Options
–quant : What type of quantification to use (options: rpkm,raw) (default=’raw’)
–pseudo_count_ON : Add Pseudocounts to ratio (to also consider genes where we have 0 count on at least one end) (default=False)
–length : Only consider the 25% longest (uq), 50% medium (mq), or 25% shortest (lq) genes (default=’uq’)
–score_on_bases_ON : Calculate degradation score not from last and first exon but from a certain amount of bases at beginning and end that can be set via –base_number (normalized length) (default=False)
–base_number : Number of bases at beginning/end for calculating score (only relevant if –score_on_bases_ON is set) (default=100)
–log : Name of log file (default=’out.log’)
–verbose_ON : Set logger to verbose (default=False)
–plot_ON : Plot figures (default=False)
–fn_sample_ratio : Sample Ratios in relation to yours (default=os.path.join(os.path.realpath(__file__).rsplit(‘/’, 1)[:-1][0], ‘data’, ‘sampleRatios/TCGA_sample_a_ratio_uq.tsv’))
–mask_filter : Mask all read-counts below this integer (default=’0’)
–protein_coding_filter_OFF’ : Only consider genes that are protein-coding (default=True)
–length_filter_OFF : Only consider genes of certain length (specified via –length) (default=True)
–save_counts_ON : Store the exon counts in .npy and .tsv files for later use (via –cnt_dir) (default=False)
–legacy : Switch on some legacy behavior (currently only targeting alternate calculation of transcript length in libs/annotation.py) (default=False)
- Kmer Options (only relevant if using fastq as input)
–kmer_length : Length of k-mer for alignmentfree counting (default=27)
–reads_kmer : Required active reads per sample or if in [0, 1] then fraction of input reads considered (default=50000)
–step_k : Step-size for k-mer counting (default=4)
Additional Options for Degradation Compensation
–scale_counts_ON : Scale counts with pre-computed scaling factors for degradation compensation (gi), default=False
–scale_factors_dir : Directory of files containing scaling factors (default=’-‘)
- The scaling-factor files can be generated with a command like
python …/degradation_tool/scalingFactors.py –bam_dir=’…’ –anno_fn=’…’ –out_dir=’…’
- mainly using the same parameters as for the Degradation Detection with additional:
–bins : Number of bins for different gene lengths (default=10)
–relative_binning_ON : Have relative (to number of genes) bin boundaries instead of absolute values (default=False)
–average_factors_ON : Compute scaling factors by using average (instead of median) per length bin (default=False)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file riqc-0.2.0.tar.gz
.
File metadata
- Download URL: riqc-0.2.0.tar.gz
- Upload date:
- Size: 28.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4555732ebc04839a5a3dfbad5b20e0424ed909189a963a30048b6b19d7a8169c |
|
MD5 | e145b07f74e9cfbc2631e218e7e61b2c |
|
BLAKE2b-256 | ec10ff9f61f2378b69f72797ce3ad64ccbe29eb213d849306eeeb115943d732e |
Provenance
File details
Details for the file riqc-0.2.0-py2.py3-none-any.whl
.
File metadata
- Download URL: riqc-0.2.0-py2.py3-none-any.whl
- Upload date:
- Size: 27.1 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 15cf0c4306908b500241a0fb394b6143baeb73c3ea53faa01b6bebeab91efe90 |
|
MD5 | 9a0d0526da2b1b109376172d65cb2bc1 |
|
BLAKE2b-256 | 40b481737aa3c38329f4b29f651c80b9732aa60ddb509784ef521a65a369fa13 |