Skip to main content

Online machine learning in Python

Project description

river_logo

unit-tests code-quality documentation discord pypi pepy black mypy bsd_3_license


River is a Python library for online machine learning. It aims to be the most user-friendly library for doing machine learning on streaming data. River is the result of a merger between creme and scikit-multiflow.

⚡️ Quickstart

As a quick example, we'll train a logistic regression to classify the website phishing dataset. Here's a look at the first observation in the dataset.

>>> from pprint import pprint
>>> from river import datasets

>>> dataset = datasets.Phishing()

>>> for x, y in dataset:
...     pprint(x)
...     print(y)
...     break
{'age_of_domain': 1,
 'anchor_from_other_domain': 0.0,
 'empty_server_form_handler': 0.0,
 'https': 0.0,
 'ip_in_url': 1,
 'is_popular': 0.5,
 'long_url': 1.0,
 'popup_window': 0.0,
 'request_from_other_domain': 0.0}
True

Now let's run the model on the dataset in a streaming fashion. We sequentially interleave predictions and model updates. Meanwhile, we update a performance metric to see how well the model is doing.

>>> from river import compose
>>> from river import linear_model
>>> from river import metrics
>>> from river import preprocessing

>>> model = compose.Pipeline(
...     preprocessing.StandardScaler(),
...     linear_model.LogisticRegression()
... )

>>> metric = metrics.Accuracy()

>>> for x, y in dataset:
...     y_pred = model.predict_one(x)      # make a prediction
...     metric.update(y, y_pred)  # update the metric
...     model.learn_one(x, y)              # make the model learn

>>> metric
Accuracy: 89.28%

Of course, this is just a contrived example. We welcome you to check the introduction section of the documentation for a more thorough tutorial.

🛠 Installation

River is intended to work with Python 3.8 and above. Installation can be done with pip:

pip install river

There are wheels available for Linux, MacOS, and Windows. This means you most probably won't have to build River from source.

You can install the latest development version from GitHub as so:

pip install git+https://github.com/online-ml/river --upgrade
pip install git+ssh://git@github.com/online-ml/river.git --upgrade  # using SSH

This method requires having Cython and Rust installed on your machine.

🔮 Features

River provides online implementations of the following family of algorithms:

  • Linear models, with a wide array of optimizers
  • Decision trees and random forests
  • (Approximate) nearest neighbors
  • Anomaly detection
  • Drift detection
  • Recommender systems
  • Time series forecasting
  • Bandits
  • Factorization machines
  • Imbalanced learning
  • Clustering
  • Bagging/boosting/stacking
  • Active learning

River also provides other online utilities:

  • Feature extraction and selection
  • Online statistics and metrics
  • Preprocessing
  • Built-in datasets
  • Progressive model validation
  • Model pipelines

Check out the API for a comprehensive overview

🤔 Should I be using River?

You should ask yourself if you need online machine learning. The answer is likely no. Most of the time batch learning does the job just fine. An online approach might fit the bill if:

  • You want a model that can learn from new data without having to revisit past data.
  • You want a model which is robust to concept drift.
  • You want to develop your model in a way that is closer to what occurs in a production context, which is usually event-based.

Some specificities of River are that:

  • It focuses on clarity and user experience, more so than performance.
  • It's very fast at processing one sample at a time. Try it, you'll see.
  • It plays nicely with the rest of Python's ecosystem.

🔗 Useful links

👐 Contributing

Feel free to contribute in any way you like, we're always open to new ideas and approaches.

  • Open a discussion if you have any question or enquiry whatsoever. It's more useful to ask your question in public rather than sending us a private email. It's also encouraged to open a discussion before contributing, so that everyone is aligned and unnecessary work is avoided.
  • Feel welcome to open an issue if you think you've spotted a bug or a performance issue.
  • Our roadmap is public. Feel free to work on anything that catches your eye, or to make suggestions.

Please check out the contribution guidelines if you want to bring modifications to the code base.

🤝 Affiliations

affiliations

💬 Citation

If River has been useful to you, and you would like to cite it in a scientific publication, please refer to the paper published at JMLR:

@article{montiel2021river,
  title={River: machine learning for streaming data in Python},
  author={Montiel, Jacob and Halford, Max and Mastelini, Saulo Martiello
          and Bolmier, Geoffrey and Sourty, Raphael and Vaysse, Robin and Zouitine, Adil
          and Gomes, Heitor Murilo and Read, Jesse and Abdessalem, Talel and others},
  year={2021}
}

📝 License

River is free and open-source software licensed under the 3-clause BSD license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

river-0.21.2.tar.gz (1.3 MB view details)

Uploaded Source

Built Distributions

river-0.21.2-cp312-cp312-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.12 Windows x86-64

river-0.21.2-cp312-cp312-win32.whl (2.2 MB view details)

Uploaded CPython 3.12 Windows x86

river-0.21.2-cp312-cp312-musllinux_1_1_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

river-0.21.2-cp312-cp312-musllinux_1_1_aarch64.whl (3.9 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

river-0.21.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

river-0.21.2-cp312-cp312-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl (3.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

river-0.21.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

river-0.21.2-cp312-cp312-macosx_14_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.12 macOS 14.0+ ARM64

river-0.21.2-cp312-cp312-macosx_13_0_universal2.whl (2.6 MB view details)

Uploaded CPython 3.12 macOS 13.0+ universal2 (ARM64, x86-64)

river-0.21.2-cp312-cp312-macosx_12_0_universal2.whl (2.6 MB view details)

Uploaded CPython 3.12 macOS 12.0+ universal2 (ARM64, x86-64)

river-0.21.2-cp311-cp311-win_amd64.whl (2.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

river-0.21.2-cp311-cp311-win32.whl (2.0 MB view details)

Uploaded CPython 3.11 Windows x86

river-0.21.2-cp311-cp311-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

river-0.21.2-cp311-cp311-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

river-0.21.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

river-0.21.2-cp311-cp311-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl (3.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

river-0.21.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

river-0.21.2-cp311-cp311-macosx_14_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.11 macOS 14.0+ ARM64

river-0.21.2-cp311-cp311-macosx_13_0_universal2.whl (2.6 MB view details)

Uploaded CPython 3.11 macOS 13.0+ universal2 (ARM64, x86-64)

river-0.21.2-cp311-cp311-macosx_12_0_universal2.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 12.0+ universal2 (ARM64, x86-64)

river-0.21.2-cp310-cp310-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

river-0.21.2-cp310-cp310-win32.whl (1.9 MB view details)

Uploaded CPython 3.10 Windows x86

river-0.21.2-cp310-cp310-musllinux_1_1_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

river-0.21.2-cp310-cp310-musllinux_1_1_aarch64.whl (3.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

river-0.21.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

river-0.21.2-cp310-cp310-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl (3.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

river-0.21.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

river-0.21.2-cp310-cp310-macosx_14_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 14.0+ ARM64

river-0.21.2-cp310-cp310-macosx_13_0_universal2.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 13.0+ universal2 (ARM64, x86-64)

river-0.21.2-cp310-cp310-macosx_12_0_universal2.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 12.0+ universal2 (ARM64, x86-64)

river-0.21.2-cp39-cp39-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

river-0.21.2-cp39-cp39-win32.whl (1.8 MB view details)

Uploaded CPython 3.9 Windows x86

river-0.21.2-cp39-cp39-musllinux_1_1_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

river-0.21.2-cp39-cp39-musllinux_1_1_aarch64.whl (3.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

river-0.21.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

river-0.21.2-cp39-cp39-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl (3.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

river-0.21.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

river-0.21.2-cp39-cp39-macosx_14_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.9 macOS 14.0+ ARM64

river-0.21.2-cp39-cp39-macosx_13_0_universal2.whl (2.4 MB view details)

Uploaded CPython 3.9 macOS 13.0+ universal2 (ARM64, x86-64)

river-0.21.2-cp39-cp39-macosx_12_0_universal2.whl (2.4 MB view details)

Uploaded CPython 3.9 macOS 12.0+ universal2 (ARM64, x86-64)

File details

Details for the file river-0.21.2.tar.gz.

File metadata

  • Download URL: river-0.21.2.tar.gz
  • Upload date:
  • Size: 1.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.9

File hashes

Hashes for river-0.21.2.tar.gz
Algorithm Hash digest
SHA256 359d5e9b267b07e025f0dee1e2621c6fa587a73152054387a506877e2d8f68be
MD5 4cb165ad42ade9144dbb858954df204a
BLAKE2b-256 62cac498394cb9daef16028c20c1df70df884e6cb68556828a191e5df44e1347

See more details on using hashes here.

File details

Details for the file river-0.21.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: river-0.21.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.9

File hashes

Hashes for river-0.21.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 7851e20f722b66896a7cdd0aec3e8620c3556501f0b377c2879f49d9e65bffa6
MD5 fb65aac8aca9bce5b150f513e852e4be
BLAKE2b-256 0b8d128884221c231f993e9c991ddbf7df751fb72439963eb9d86b2eec818896

See more details on using hashes here.

File details

Details for the file river-0.21.2-cp312-cp312-win32.whl.

File metadata

  • Download URL: river-0.21.2-cp312-cp312-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.9

File hashes

Hashes for river-0.21.2-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 ca2b85d06d82048c96d789be0b2da86f8f3bda80014a08a8cdb984d783bfc01b
MD5 aee842abc3542a27d2a05011a745634a
BLAKE2b-256 84999b5732026342dd87251c9d62802e69fef3f5d446d726fe5c3646ce58a25c

See more details on using hashes here.

File details

Details for the file river-0.21.2-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for river-0.21.2-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f4055768cc327239631709d47fefea0baeff810f43aef2c2c9a7d2f8b6025ad0
MD5 9b823a9642c4264ca3d7b536b8918b58
BLAKE2b-256 155b3f6f915db3b8469847d1958f68bde5ff9e8ee12d4722bb972ff94d9abc12

See more details on using hashes here.

File details

Details for the file river-0.21.2-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for river-0.21.2-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 7ee808bac1ef590160764afceef80717d9d012a74c44bcc532cf92b3393a7a61
MD5 18698617758eacad6077d504b6c9b082
BLAKE2b-256 64591245c4d3cfefaccc5f60bfd44227dc09e2da10052aa3e5c53c63e389e570

See more details on using hashes here.

File details

Details for the file river-0.21.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for river-0.21.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e7edabc2b7ae20d252379105cd4c104bc30d5c20a062ee1b24fb80a3e6810d48
MD5 cc90e2fc301b4e228ebb6c61ece800b3
BLAKE2b-256 9bca08b9564e8c0f3822e25e1dc68a9d38b7bad8ccf3c71bf925820feca3df45

See more details on using hashes here.

File details

Details for the file river-0.21.2-cp312-cp312-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for river-0.21.2-cp312-cp312-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 49b7320f828d7bc5db9ffe4c61df465e563c9200a106a3c27511674247d4d660
MD5 946eb52cbb3a11f45ca2c6cbdf42abcd
BLAKE2b-256 05fd09f8be21fa0db26d7de4c4020cfcb5e92fb11f325130a7d58ef817cc5c98

See more details on using hashes here.

File details

Details for the file river-0.21.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for river-0.21.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 72a3dd3533e558a7592389a20d0579dc8e2a84624b40e9fdfedf852aca60ad9c
MD5 15b558a8410c401244c31af96a8a8582
BLAKE2b-256 3a2612bc774af04b4831e08bffcdd6c5b4e0678ac5730e2f254cf452e6818a0a

See more details on using hashes here.

File details

Details for the file river-0.21.2-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for river-0.21.2-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 284d43fd758c3662dbf9f8fb255457a36a29d5916dab452c36f9a0a73e74b2f6
MD5 77b05241fb1856f1112bd8447209b084
BLAKE2b-256 387929b363d1bb8aa42ee0cbcda1a9ce118beeff3d1dbc64175f870a823afa31

See more details on using hashes here.

File details

Details for the file river-0.21.2-cp312-cp312-macosx_13_0_universal2.whl.

File metadata

File hashes

Hashes for river-0.21.2-cp312-cp312-macosx_13_0_universal2.whl
Algorithm Hash digest
SHA256 8b40c62312f3bbf0201d9df78f935fe72107482791f198628bc337c116e6cbd4
MD5 c5fc3cae2bd0773f5e81b126135c1f7f
BLAKE2b-256 441a671d7bc1fd8747b5ca76b24184e76e326c97e3144cf71da7aa9249efcd22

See more details on using hashes here.

File details

Details for the file river-0.21.2-cp312-cp312-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for river-0.21.2-cp312-cp312-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 f1fdd69e36125485f203d47fd42e12a86b3dd9727ddeb7fbe0e7bab030202460
MD5 291748c6c4d0bd6108116aa7264482c3
BLAKE2b-256 ed9e4ab2fdf30e8f01ab6c557681e143be229ceaba7bc65e9af49f32b8fe9605

See more details on using hashes here.

File details

Details for the file river-0.21.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: river-0.21.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.9

File hashes

Hashes for river-0.21.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 81517c851b7110bcbe378a219426d8d41a142c8cbf626abb54d72bebec5aefca
MD5 a13187891bcf06d1a7edfb75b3c4c6b0
BLAKE2b-256 6bfa7aa59ea91ef454f7480ae2d1fb653c7cf6dccee6c3ed2868a57189e7f0f1

See more details on using hashes here.

File details

Details for the file river-0.21.2-cp311-cp311-win32.whl.

File metadata

  • Download URL: river-0.21.2-cp311-cp311-win32.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.9

File hashes

Hashes for river-0.21.2-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 dc404852d2f3cd40107d0c785d82a839f37f3c862c410a1966f50b1ce144d5f5
MD5 2f284a2addaf5a41738c3b0e0d8afddd
BLAKE2b-256 24a110f413227596ab2be3206bd23ef684d3e3052b6b03c9800cd39ad516a0f6

See more details on using hashes here.

File details

Details for the file river-0.21.2-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for river-0.21.2-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 518058b29549eb389b81c305ebac3f09d7757ee6f2bf7cd0fe4800c6849ad1d6
MD5 08acfa88dd5e6689abfa8cd8ece41444
BLAKE2b-256 8a6ce2f896bf440ce9249e04ac870177c239eb2513e6b60e076420318c0fd7b8

See more details on using hashes here.

File details

Details for the file river-0.21.2-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for river-0.21.2-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 aece3557c42630a0a8fcc1803e9203fd750af1c50c9b65a66d09e49c28754ad0
MD5 5e3186d2a9ed96613821f4e8349372e6
BLAKE2b-256 df7a48fa2d033018cc31362808226bbea421af0dbd13771924adef33d41f13bd

See more details on using hashes here.

File details

Details for the file river-0.21.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for river-0.21.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 18973b1f0e98649b16813fffc83a6d4ec50be7fda48a719e91140c2b442d2fdf
MD5 f5c10b5e53b6b617c1212ba730a63c95
BLAKE2b-256 b7f8781d97746e43dbb575d6c294cbd504f58a4dfa3c466be94fa4bb58c198a0

See more details on using hashes here.

File details

Details for the file river-0.21.2-cp311-cp311-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for river-0.21.2-cp311-cp311-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ce2261820c86be073227e140056889aa565591e7e168497efbb9f5249d3098ab
MD5 6c7e9b53dc48a47e7492cc88d80c4658
BLAKE2b-256 c3bc99866e54dbbe81d20e90cbc0e8f6552e0eb38b4a6bd1b836b3843f1962bd

See more details on using hashes here.

File details

Details for the file river-0.21.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for river-0.21.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 497218d0825db80f76d824e7e610d5422f4ac7bc50a57f422010510565e97f93
MD5 0b792ee1dcee79d1a75051da5380b18c
BLAKE2b-256 5a743256dc30c288812f477b16183beca7453b9c45354305b39fdf9fd22c9d5c

See more details on using hashes here.

File details

Details for the file river-0.21.2-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for river-0.21.2-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 081ffb19c77636b5a9b4ccc7240350277a6977539220d8f9747affba27051f2e
MD5 0cdd5a2be78c06fbe9ee68893f4cdb08
BLAKE2b-256 c1574963d0d95bc86725d1d5e78ae6958deb1a035c5a05e342518d4b52886d6a

See more details on using hashes here.

File details

Details for the file river-0.21.2-cp311-cp311-macosx_13_0_universal2.whl.

File metadata

File hashes

Hashes for river-0.21.2-cp311-cp311-macosx_13_0_universal2.whl
Algorithm Hash digest
SHA256 181dcb00b70010ed490def6ddb8190ee49aa522145af74f223f8aef174db05ee
MD5 cc0181bf03349e2ee14a258d912cf4bf
BLAKE2b-256 c9f5beb36f7dcada4fc374164c251879dde43fa4482c2beeec245692aa66d60d

See more details on using hashes here.

File details

Details for the file river-0.21.2-cp311-cp311-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for river-0.21.2-cp311-cp311-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 468c50c7e335d75883868c7c89ebe6e456734e4c8f11b8f5bcdd09942255e600
MD5 a1a82aa39084d21e8ee5877a55d5ab59
BLAKE2b-256 64e386a966ffbd231d539cfe80f9e865b76a09f6300a02693fd6fa7fd29c6da7

See more details on using hashes here.

File details

Details for the file river-0.21.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: river-0.21.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.9

File hashes

Hashes for river-0.21.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9f2d21ff95c942ce13e2e237336bb7bf42fb15e439572c0daec9c8244bb4afc1
MD5 3cf4a0dae5f2d887cdf9be1db443bde3
BLAKE2b-256 7d008d6faa797c685cf5363464c125570d21679d10eeac5896b1db412637b1b8

See more details on using hashes here.

File details

Details for the file river-0.21.2-cp310-cp310-win32.whl.

File metadata

  • Download URL: river-0.21.2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.9

File hashes

Hashes for river-0.21.2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 08471dea7b50986bd6c9558cdce1f680d483c3d5057e74261f24cb6b97474670
MD5 b8b86ea9c10c9720ffaa537443bfa319
BLAKE2b-256 289b191f6859a4b920415f1f0cd0eb9826a860a3a02130b6b448616417de436e

See more details on using hashes here.

File details

Details for the file river-0.21.2-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for river-0.21.2-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 40b8a3bb74f1bd25d533cfdfb88bd46e370d1ca4f71e48bcc15968838a2488bf
MD5 14281f3fac9d794e35f17fae69580126
BLAKE2b-256 bfd6cf9130760d195f77a186e38d20deb3bb44c230928909d682ae708621828d

See more details on using hashes here.

File details

Details for the file river-0.21.2-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for river-0.21.2-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 9d44e22564d21e4b324accb875d3b56b0ba830cb70772c218c263e53a7ae210d
MD5 f6df277896c47dd62284dd2c2304a485
BLAKE2b-256 54cba2ec428dafc892a75d2f72f3b07185ea23a0c8988a5d6a587358d0cfd1e6

See more details on using hashes here.

File details

Details for the file river-0.21.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for river-0.21.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6a10ad22ffce17a2d2a4526ae7cfd607cc2b9359dcf63d80e7bf0556f91686a6
MD5 91a4cd3277644ba91cc337c5f39d7e0d
BLAKE2b-256 e37e05ca48bce133d72ffe487bc1583626eb21caaf82f4fdb0467caad14ed3e0

See more details on using hashes here.

File details

Details for the file river-0.21.2-cp310-cp310-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for river-0.21.2-cp310-cp310-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0ff63aa12a83c2fd9ec4861269eac0a4fe2e56568a56177edeb864560f126182
MD5 86ed9dcee1dff93a12b9c8a780d99ef0
BLAKE2b-256 83bf6c46d542add3804538d3e1724064f7ecd7960c6c2308124af48f4d7a2c14

See more details on using hashes here.

File details

Details for the file river-0.21.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for river-0.21.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e1a6ec775bd92c83bc4684ea163a74f63f718529a051be1a95300affde263669
MD5 4f0ac5b6405bc5e2743fc1bc902c08ab
BLAKE2b-256 cb0d01991b12d8a06e40e5c7311515257dee72c3d4b149f6a4be142079de00ad

See more details on using hashes here.

File details

Details for the file river-0.21.2-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for river-0.21.2-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 d6f8cf9602481586d1557cfe55f154dc4a46decc1b2b83fbd62d5179b1d3d1d7
MD5 c41c34b0729edf0c49e22f492faff08a
BLAKE2b-256 e06f50ad8ba59ed01e6173724b3e6921ba10511c3a33ad5fd7f09eed096e290a

See more details on using hashes here.

File details

Details for the file river-0.21.2-cp310-cp310-macosx_13_0_universal2.whl.

File metadata

File hashes

Hashes for river-0.21.2-cp310-cp310-macosx_13_0_universal2.whl
Algorithm Hash digest
SHA256 b8e652c21d9973ef71d71dd7dd2dc978fcda2e7d079b0eaed51a2b9f33e4513d
MD5 63a874b285f27f9cf660a55171a9d668
BLAKE2b-256 7ef8cac35a61472b623fce541f9ec7541fbc6ace8e87c9ee5605aee95cbbc1a3

See more details on using hashes here.

File details

Details for the file river-0.21.2-cp310-cp310-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for river-0.21.2-cp310-cp310-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 a1118d8c7f3a136bc02bf63c3624b342e5f227b2bf7878061ec716907cdf52d4
MD5 f423f34c8e7874a31ef782fd2a751193
BLAKE2b-256 4cd582b4363872a576ef8f8df4af62aeecae5d0c332bb700f41013a90d2efb0c

See more details on using hashes here.

File details

Details for the file river-0.21.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: river-0.21.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.9

File hashes

Hashes for river-0.21.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9eefd791eab58677d1ec668ba7149bfd33664c2ec918cc591d9135bd45d756cd
MD5 9dcee4a19a31afed82f5da53e16a6a14
BLAKE2b-256 030ab7bed152ecd5000fe9d97b63c98482b8b4d41f3bd88179e3bcabb6dbb118

See more details on using hashes here.

File details

Details for the file river-0.21.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: river-0.21.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.9

File hashes

Hashes for river-0.21.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 7778a397ee4b6eba186c1619b7e77f7802b00bf6a63231b8c2dea17e23c4c6b2
MD5 a61e8225423d72bd751ba6635225b343
BLAKE2b-256 9c1ab60b5f5f977ee773fb682ecc1ab00b4fe0028c1f0aed3eea0345af1b9638

See more details on using hashes here.

File details

Details for the file river-0.21.2-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for river-0.21.2-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6dd03c8211b836d8decdb3003923f84bbf941af3d413c6aa3629473934b09d96
MD5 a454ba8a84a5645b24915615471ca49f
BLAKE2b-256 c08345ebce1e73993de4b68572ab138dd6ba63bd577a6077ada3cdf55fe56032

See more details on using hashes here.

File details

Details for the file river-0.21.2-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for river-0.21.2-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 0b9efc1dcae80fa29a6900f0ff9081d54c173752878d26fd72a2af83495c1bbe
MD5 d5f8f9116740faf006d797e66479e120
BLAKE2b-256 2a34a775f9c2569cf0dda0d021b335f2bca361dec7e682aa31bef9d9b2ed03f7

See more details on using hashes here.

File details

Details for the file river-0.21.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for river-0.21.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 530b34370eefcff92fec5fbaf8a069975416f666a3e9da05f20b6285a729a013
MD5 57c39eb34d74c90a86326fb4bdd7f4e8
BLAKE2b-256 aacb9ffe4c85baa74b32090a636283a04e2a5afbfe79cfb769b5c981eef2982f

See more details on using hashes here.

File details

Details for the file river-0.21.2-cp39-cp39-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for river-0.21.2-cp39-cp39-manylinux_2_17_i686.manylinux_2_5_i686.manylinux1_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ec728852a416e2e8c74d442f5820dec1b3be90b2bac243a96748f7a0f337b1ed
MD5 787b32097a92f7b87d21930a2bff08e3
BLAKE2b-256 000dcf880fcaaa72a97d0832a1cfa2d9137b62b15f3c6446aef0f2927e8b82e7

See more details on using hashes here.

File details

Details for the file river-0.21.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for river-0.21.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 13a72ac557ad2b90bacf6d2277ce6a5f114104946f2d77d0011fe6b82f195df8
MD5 96beac85cde5a056f33862ca9aea4449
BLAKE2b-256 4ee75ccb84e920213755a6a5ed0625d2277408fe4693dab5136d382729c6f4d5

See more details on using hashes here.

File details

Details for the file river-0.21.2-cp39-cp39-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for river-0.21.2-cp39-cp39-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 49b3f54c7d4152ea7cb2002c131a012c5331fb062fa7c44a00d3c263a657e014
MD5 881677ee2be1a11525e788819be6bece
BLAKE2b-256 99d488fde674b948ace5fc81be7e2c491c913c8a984f8dc528e4917a464a74c3

See more details on using hashes here.

File details

Details for the file river-0.21.2-cp39-cp39-macosx_13_0_universal2.whl.

File metadata

File hashes

Hashes for river-0.21.2-cp39-cp39-macosx_13_0_universal2.whl
Algorithm Hash digest
SHA256 484bdbdeb155943f895ba493f3bcb547341dcf994a1c2a3f22d23b8c03c524f5
MD5 1ea50baca1d6b59d0f2e02b92e527da9
BLAKE2b-256 5c9e01cc94a842ed067e45e6f0ac72a637bebd3a98c3895e55263a74692a273e

See more details on using hashes here.

File details

Details for the file river-0.21.2-cp39-cp39-macosx_12_0_universal2.whl.

File metadata

File hashes

Hashes for river-0.21.2-cp39-cp39-macosx_12_0_universal2.whl
Algorithm Hash digest
SHA256 d99a368264ce6eacc365f871c6855818970ff1abdd90a6f007a592c0ed10a612
MD5 81e1c52e04fd67e8b6ce8a34a3e42060
BLAKE2b-256 fac1bc064ab84e97742288ca73aaa1f35676869912f12dc2e1206229f5f54e1f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page