Skip to main content

Online Deep Learning for river

Project description

incremental dl logo

PyPI PyPI - Downloads GitHub

river-torch is a Python library for online deep learning. River-torch's ambition is to enable online machine learning for neural networks. It combines the river API with the capabilities of designing neural networks based on PyTorch.

💈 Installation

pip install river-torch

or

pip install "river[torch]"

You can install the latest development version from GitHub as so:

pip install https://github.com/online-ml/river-torch/archive/refs/heads/master.zip

🍫 Quickstart

We build the development of neural networks on top of the river API and refer to the rivers design principles. The following example creates a simple MLP architecture based on PyTorch and incrementally predicts and trains on the website phishing dataset. For further examples check out the Documentation.

Classification

>>> from river import metrics, datasets, preprocessing, compose
>>> from river_torch import classification
>>> from torch import nn
>>> from torch import optim
>>> from torch import manual_seed

>>> _ = manual_seed(42)

>>> class MyModule(nn.Module):
...     def __init__(self, n_features):
...         super(MyModule, self).__init__()
...         self.dense0 = nn.Linear(n_features, 5)
...         self.nonlin = nn.ReLU()
...         self.dense1 = nn.Linear(5, 2)
...         self.softmax = nn.Softmax(dim=-1)
...
...     def forward(self, X, **kwargs):
...         X = self.nonlin(self.dense0(X))
...         X = self.nonlin(self.dense1(X))
...         X = self.softmax(X)
...         return X

>>> model_pipeline = compose.Pipeline(
...     preprocessing.StandardScaler(),
...     classification.Classifier(module=MyModule, loss_fn='binary_cross_entropy', optimizer_fn='adam')
... )

>>> dataset = datasets.Phishing()
>>> metric = metrics.Accuracy()

>>> for x, y in dataset:
...     y_pred = model_pipeline.predict_one(x)  # make a prediction
...     metric = metric.update(y, y_pred)  # update the metric
...     model_pipeline = model_pipeline.learn_one(x,y)  # make the model learn
>>> print(f"Accuracy: {metric.get():.4f}")
Accuracy: 0.6728

Anomaly Detection

>>> from river_torch.anomaly import Autoencoder
>>> from river import metrics
>>> from river.datasets import CreditCard
>>> from torch import nn
>>> import math
>>> from river.compose import Pipeline
>>> from river.preprocessing import MinMaxScaler

>>> dataset = CreditCard().take(5000)
>>> metric = metrics.ROCAUC(n_thresholds=50)

>>> class MyAutoEncoder(nn.Module):
...     def __init__(self, n_features, latent_dim=3):
...         super(MyAutoEncoder, self).__init__()
...         self.linear1 = nn.Linear(n_features, latent_dim)
...         self.nonlin = nn.LeakyReLU()
...         self.linear2 = nn.Linear(latent_dim, n_features)
...         self.sigmoid = nn.Sigmoid()
...
...     def forward(self, X, **kwargs):
...         X = self.linear1(X)
...         X = self.nonlin(X)
...         X = self.linear2(X)
...         return self.sigmoid(X)

>>> ae = Autoencoder(module=MyAutoEncoder, lr=0.005)
>>> scaler = MinMaxScaler()
>>> model = Pipeline(scaler, ae)

>>> for x, y in dataset:
...    score = model.score_one(x)
...    model = model.learn_one(x=x)
...    metric = metric.update(y, score)
...
>>> print(f"ROCAUC: {metric.get():.4f}")
ROCAUC: 0.7447

🏫 Affiliations

FZI Logo

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

river_torch-0.1.2.tar.gz (23.0 kB view details)

Uploaded Source

Built Distribution

river_torch-0.1.2-py3-none-any.whl (34.2 kB view details)

Uploaded Python 3

File details

Details for the file river_torch-0.1.2.tar.gz.

File metadata

  • Download URL: river_torch-0.1.2.tar.gz
  • Upload date:
  • Size: 23.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for river_torch-0.1.2.tar.gz
Algorithm Hash digest
SHA256 dc50cd7c4d2a330c21559454434baf4cdd65a2b472e0f0d5a38f64d29231a1da
MD5 a83255c0e0cda9f8e22a5123b03f3e14
BLAKE2b-256 2a0bb2fe0b3b3d3461b0bf9393e3cb376342194e61d71b82904d6e837e809234

See more details on using hashes here.

File details

Details for the file river_torch-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: river_torch-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 34.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for river_torch-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 5834665fe03b659c22e330463940db45c381956ea1d2ab33cdefd6529e15dde9
MD5 36c1781c5e180e548808784f57408a2f
BLAKE2b-256 7844c64629a55cd118ed6dbf161ad4bef9f58073f7a47f5440c6e65315e9882b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page