Online Deep Learning for river
Project description
river-torch is a Python library for online deep learning. River-torch's ambition is to enable online machine learning for neural networks. It combines the river API with the capabilities of designing neural networks based on PyTorch.
💈 Installation
pip install river-torch
or
pip install "river[torch]"
You can install the latest development version from GitHub as so:
pip install https://github.com/online-ml/river-torch/archive/refs/heads/master.zip
🍫 Quickstart
We build the development of neural networks on top of the river API and refer to the rivers design principles. The following example creates a simple MLP architecture based on PyTorch and incrementally predicts and trains on the website phishing dataset. For further examples check out the Documentation.
Classification
>>> from river import metrics, datasets, preprocessing, compose
>>> from river_torch import classification
>>> from torch import nn
>>> from torch import optim
>>> from torch import manual_seed
>>> _ = manual_seed(42)
>>> class MyModule(nn.Module):
... def __init__(self, n_features):
... super(MyModule, self).__init__()
... self.dense0 = nn.Linear(n_features, 5)
... self.nonlin = nn.ReLU()
... self.dense1 = nn.Linear(5, 2)
... self.softmax = nn.Softmax(dim=-1)
...
... def forward(self, X, **kwargs):
... X = self.nonlin(self.dense0(X))
... X = self.nonlin(self.dense1(X))
... X = self.softmax(X)
... return X
>>> model_pipeline = compose.Pipeline(
... preprocessing.StandardScaler(),
... classification.Classifier(module=MyModule, loss_fn='binary_cross_entropy', optimizer_fn='adam')
... )
>>> dataset = datasets.Phishing()
>>> metric = metrics.Accuracy()
>>> for x, y in dataset:
... y_pred = model_pipeline.predict_one(x) # make a prediction
... metric = metric.update(y, y_pred) # update the metric
... model_pipeline = model_pipeline.learn_one(x,y) # make the model learn
>>> print(f"Accuracy: {metric.get():.4f}")
Accuracy: 0.6728
Anomaly Detection
>>> from river_torch.anomaly import Autoencoder
>>> from river import metrics
>>> from river.datasets import CreditCard
>>> from torch import nn
>>> import math
>>> from river.compose import Pipeline
>>> from river.preprocessing import MinMaxScaler
>>> dataset = CreditCard().take(5000)
>>> metric = metrics.ROCAUC(n_thresholds=50)
>>> class MyAutoEncoder(nn.Module):
... def __init__(self, n_features, latent_dim=3):
... super(MyAutoEncoder, self).__init__()
... self.linear1 = nn.Linear(n_features, latent_dim)
... self.nonlin = nn.LeakyReLU()
... self.linear2 = nn.Linear(latent_dim, n_features)
... self.sigmoid = nn.Sigmoid()
...
... def forward(self, X, **kwargs):
... X = self.linear1(X)
... X = self.nonlin(X)
... X = self.linear2(X)
... return self.sigmoid(X)
>>> ae = Autoencoder(module=MyAutoEncoder, lr=0.005)
>>> scaler = MinMaxScaler()
>>> model = Pipeline(scaler, ae)
>>> for x, y in dataset:
... score = model.score_one(x)
... model = model.learn_one(x=x)
... metric = metric.update(y, score)
...
>>> print(f"ROCAUC: {metric.get():.4f}")
ROCAUC: 0.7447
🏫 Affiliations
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file river_torch-0.1.2.tar.gz
.
File metadata
- Download URL: river_torch-0.1.2.tar.gz
- Upload date:
- Size: 23.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | dc50cd7c4d2a330c21559454434baf4cdd65a2b472e0f0d5a38f64d29231a1da |
|
MD5 | a83255c0e0cda9f8e22a5123b03f3e14 |
|
BLAKE2b-256 | 2a0bb2fe0b3b3d3461b0bf9393e3cb376342194e61d71b82904d6e837e809234 |
File details
Details for the file river_torch-0.1.2-py3-none-any.whl
.
File metadata
- Download URL: river_torch-0.1.2-py3-none-any.whl
- Upload date:
- Size: 34.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5834665fe03b659c22e330463940db45c381956ea1d2ab33cdefd6529e15dde9 |
|
MD5 | 36c1781c5e180e548808784f57408a2f |
|
BLAKE2b-256 | 7844c64629a55cd118ed6dbf161ad4bef9f58073f7a47f5440c6e65315e9882b |