Skip to main content

Online Deep Learning for river

Project description

GitHub last commit unit-tests Codecov docs

incremental dl logo

DeepRiver is a Python library for online deep learning. DeepRivers ambition is to enable online machine learning for neural networks. It combines the river API with the capabilities of designing neural networks based on PyTorch.

💈 Installation

pip install river-torch

You can install the latest development version from GitHub as so:

pip install https://github.com/online-ml/river-torch --upgrade

Or, through SSH:

pip install git@github.com:online-ml/river-torch.git --upgrade

🍫 Quickstart

We build the development of neural networks on top of the river API and refer to the rivers design principles. The following example creates a simple MLP architecture based on PyTorch and incrementally predicts and trains on the website phishing dataset. For further examples check out the Documentation.

Classification

>>> from river import datasets
>>> from river import metrics
>>> from river import preprocessing
>>> from river import compose
>>> from river_torch import classification
>>> from torch import nn
>>> from torch import optim
>>> from torch import manual_seed

>>> _ = manual_seed(42)


>>> def build_torch_mlp_classifier(n_features):  # build neural architecture
...     net = nn.Sequential(
...         nn.Linear(n_features, 5),
...         nn.Linear(5, 5),
...         nn.Linear(5, 5),
...         nn.Linear(5, 5),
...         nn.Linear(5, 1),
...         nn.Sigmoid()
...     )
...     return net


>>> model = compose.Pipeline(
...     preprocessing.StandardScaler(),
...     classification.Classifier(build_fn=build_torch_mlp_classifier, loss_fn='bce', optimizer_fn=optim.Adam, learning_rate=1e-3)
... )

>>> dataset = datasets.Phishing()
>>> metric = metrics.Accuracy()

>>> for x, y in dataset:
...     y_pred = model.predict_one(x)  # make a prediction
...     metric = metric.update(y, y_pred)  # update the metric
...     model = model.learn_one(x, y)  # make the model learn

>>> print(f'Accuracy: {metric.get()}')
Accuracy: 0.8304

Anomaly Detection

>>> import math
>>> from river import datasets, metrics
>>> from river_torch.base import AutoencodedAnomalyDetector
>>> from river_torch.utils import get_activation_fn
>>> from torch import manual_seed, nn

>>> _ = manual_seed(42)

>>> def get_encoder(activation_fn="selu", dropout=0.5, n_features=3):
...     activation = get_activation_fn(activation_fn)
...     encoder = nn.Sequential(
...         nn.Dropout(p=dropout),
...         nn.Linear(in_features=n_features, out_features=math.ceil(n_features / 2)),
...         activation(),
...         nn.Linear(in_features=math.ceil(n_features / 2), out_features=math.ceil(n_features / 4)),
...         activation(),
...     )
...     return encoder

>>> def get_decoder(activation_fn="selu", dropout=0.5, n_features=3):
...     activation = get_activation_fn(activation_fn)
...     decoder = nn.Sequential(
...         nn.Linear(in_features=math.ceil(n_features / 4), out_features=math.ceil(n_features / 2)),
...         activation(),
...         nn.Linear(in_features=math.ceil(n_features / 2), out_features=n_features),
...     )
...     return decoder


>>> dataset = datasets.CreditCard().take(5000)
>>> metric = metrics.ROCAUC()
>>> encoder_fn = get_encoder
>>> decoder_fn = get_decoder
>>> dataset = datasets.CreditCard().take(5000)
>>> metric = metrics.ROCAUC()

>>> model = AutoencodedAnomalyDetector(encoder_fn=encoder_fn,decoder_fn=decoder_fn, lr=0.01)

>>> for x,y in dataset:
...     score = model.score_one(x)
...     metric = metric.update(y_true=y, y_pred=score)
...     model = model.learn_one(x=x)

🏫 Affiliations

FZI Logo

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

river_torch-0.0.13.tar.gz (19.3 kB view hashes)

Uploaded Source

Built Distribution

river_torch-0.0.13-py3-none-any.whl (23.3 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page