Skip to main content

Online Deep Learning for river

Project description

incremental dl logo

PyPI PyPI - Downloads GitHub

river-torch is a Python library for online deep learning. River-torch's ambition is to enable online machine learning for neural networks. It combines the river API with the capabilities of designing neural networks based on PyTorch.

💈 Installation

pip install river-torch

or

pip install "river[torch]"

You can install the latest development version from GitHub as so:

pip install https://github.com/online-ml/river-torch/archive/refs/heads/master.zip

🍫 Quickstart

We build the development of neural networks on top of the river API and refer to the rivers design principles. The following example creates a simple MLP architecture based on PyTorch and incrementally predicts and trains on the website phishing dataset. For further examples check out the Documentation.

Classification

>>> from river import metrics, datasets, preprocessing, compose
>>> from river_torch import classification
>>> from torch import nn
>>> from torch import optim
>>> from torch import manual_seed

>>> _ = manual_seed(42)

>>> class MyModule(nn.Module):
...     def __init__(self, n_features):
...         super(MyModule, self).__init__()
...         self.dense0 = nn.Linear(n_features, 5)
...         self.nonlin = nn.ReLU()
...         self.dense1 = nn.Linear(5, 2)
...         self.softmax = nn.Softmax(dim=-1)
...
...     def forward(self, X, **kwargs):
...         X = self.nonlin(self.dense0(X))
...         X = self.nonlin(self.dense1(X))
...         X = self.softmax(X)
...         return X

>>> model_pipeline = compose.Pipeline(
...     preprocessing.StandardScaler(),
...     classification.Classifier(module=MyModule, loss_fn='binary_cross_entropy', optimizer_fn='adam')
... )

>>> dataset = datasets.Phishing()
>>> metric = metrics.Accuracy()

>>> for x, y in dataset:
...     y_pred = model_pipeline.predict_one(x)  # make a prediction
...     metric = metric.update(y, y_pred)  # update the metric
...     model_pipeline = model_pipeline.learn_one(x,y)  # make the model learn
>>> print(f"Accuracy: {metric.get():.4f}")
Accuracy: 0.6728

Anomaly Detection

>>> from river_torch.anomaly import Autoencoder
>>> from river import metrics
>>> from river.datasets import CreditCard
>>> from torch import nn
>>> import math
>>> from river.compose import Pipeline
>>> from river.preprocessing import MinMaxScaler

>>> dataset = CreditCard().take(5000)
>>> metric = metrics.ROCAUC(n_thresholds=50)

>>> class MyAutoEncoder(nn.Module):
...     def __init__(self, n_features, latent_dim=3):
...         super(MyAutoEncoder, self).__init__()
...         self.linear1 = nn.Linear(n_features, latent_dim)
...         self.nonlin = nn.LeakyReLU()
...         self.linear2 = nn.Linear(latent_dim, n_features)
...         self.sigmoid = nn.Sigmoid()
...
...     def forward(self, X, **kwargs):
...         X = self.linear1(X)
...         X = self.nonlin(X)
...         X = self.linear2(X)
...         return self.sigmoid(X)

>>> ae = Autoencoder(module=MyAutoEncoder, lr=0.005)
>>> scaler = MinMaxScaler()
>>> model = Pipeline(scaler, ae)

>>> for x, y in dataset:
...    score = model.score_one(x)
...    model = model.learn_one(x=x)
...    metric = metric.update(y, score)
...
>>> print(f"ROCAUC: {metric.get():.4f}")
ROCAUC: 0.7447

🏫 Affiliations

FZI Logo

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

river_torch-0.1.2.tar.gz (23.0 kB view hashes)

Uploaded Source

Built Distribution

river_torch-0.1.2-py3-none-any.whl (34.2 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page