Skip to main content

Composition of music with reinforcement learning.

Project description

Build Status codecov Maintainability PyPI version



As of now, this is a proof-of-concept for music composition with reinforcement learning solely. Here, creation of fifth species counterpoint is considered and environment is based on a special data structure that represents musical piece with pre-defined cantus firmus. An action is adding a new note to a counterpoint line, an episode is finished when counterpoint duration becomes equal to that of cantus firmus, and reward is determined by applying evaluational rules to the resulting piece.

Some pieces generated with this package are uploaded to a publicly available cloud storage. A cantus firmus attributed to Fux is used in all of them.

To find more details, look at a draft of a paper. Also, if you are interested in algorithmic composition without too strict limitations of species counterpoint, look at the tools named Geniartor and Dodecaphony.


To install a stable version, run:

pip install rl-musician


To create a reward-maximizing musical piece and some its variations, run:

python -m rlmusician [-c path_to_your_config]

Default config is used if -c argument is not passed. Search of optimal piece with these default settings takes about 5 minutes on a CPU of a regular laptop. Before creating a new config, it might be useful to look at an example with explanations.

If you are on Mac OS, please check that parallelism is enabled.

Generated pieces are stored in a directory specified in the config. For each piece, there is a nested directory that contains:

  • MIDI file;
  • WAV file;
  • Events file in sinethesizer TSV format;
  • PDF file with sheet music and its Lilypond source.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rl-musician-0.4.6.tar.gz (37.0 kB view hashes)

Uploaded source

Built Distribution

rl_musician-0.4.6-py3-none-any.whl (44.3 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page