Skip to main content

Reinforcement learning environment for the unit commitment problem

Project description

RL4UC: Reinforcement Learning for Unit Commitment

This project contains an RL environment for the unit commitment problem.

## Installation

You can install this repository by running:

git clone
cd rl4uc
pip install .

Example usage:

Below we will try an action on the 5 generator system. An action is a commitment decision for the following time period, defined by a binary numpy array: 1 indicates that we want to turn (or leave) the generator on, 0 indicates turn or leave it off.

from rl4uc.environment import make_env
import numpy as np

# Create an environment, 5 generators by default.
env = make_env()

# Reset the environment to a random demand profile.
obs_init = env.reset()

# Define a commitment decision for the next time period.
action = np.array([1,1,0,0,0]) # Turn on generators 0 & 1, turns all others off.

# Take the action, observe the reward.
observation, reward, done = env.step(action)

print("Dispatch: {}".format(env.disp))
print("Finished? {}".format(done))
print("Reward: {:.2f}".format(reward))

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release. See tutorial on generating distribution archives.

Built Distribution

rl4uc_pwdemars-0.0.1-py3.8.egg (33.2 kB view hashes)

Uploaded 0 0 1

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page