Skip to main content

A module to use robust lda topics for the study of text

Project description

`rlda`: Robust Latent Dirichlet Allocation models

This python module provides a set of functions to fit multiple LDA models to a
text corpus and then search for the robust topics present in multiple models.

In natural language processing LDA models are used to classify text into topics. However, the substance of
topics often varies depending on model specification (e.g. number of *k* topics), making them
quite unstable (see Chuang_ 2015). This `python` module implements a method
proposed by Wilkerson and Casas (2016) to add a level of robustness when using
unsupervised topic models.

Please cite as:

Wilkerson, John and Andreu Casas. 2016. "Large-scale Computerized Text
Analysis in Political Science: Opportunities and Challenges." *Annual Review
of Political Science*, AA:x-x. (Forthcoming)

``pip install rlda``

Example: studying the topic of one-minute floor speeches

>>> import rlda
>>> import random

Loading all one-minute floor speeches from House representatives of the 113th Congress (n = 9,704). This dataset already comes with the module

>>> sample_data = rlda.speeches_data

Each observation or speech is a `dictionary` with the following keys: bioguide_ide, speech, date, party, id, captiolwords_url.

.. image:: images/observation_example.png
:height: 100px
:width: 200 px
:scale: 50 %
:alt: alternate text
:align: center

Create a list conatining only the speeches. Using only a sample of 1,000 random speeches for this example so that it runs faster.

>>> speeches = [d['speech'] for d in sample_data]
>>> random.seed(1)
>>> rand_vector = random.sample(xrange(len(speeches)), 1000)
>>> sample = speeches[:100]

Create an object of class RLDA so that you can implement all functions in this module

>>> robust_model = rlda.RLDA()

Construct a Term Document Matrix (TDM) from the speeches text

>>> robust_model.get_tdm(sample)

Specify in a list the number of topics (k) of the LDA models you want to estimate. For example, 3 LDA models, one with 45 topics, one with 50, and one with 55

>>> k_list = [45, 50, 55]

Specify the number of iterations when estimating the LDA models (e.g. 300)

>>> n_iter = 300

Fit the multiple LDA models

>>> robust_model.fit_models(k_list = k_list, n_iter = n_iter)

Create a cosine similarity matrix. Dimensions = TxT, where T = (number topics from all topic models). In this example the dimensions of the cosine matrix will be 150x150

>>> robust_model.get_cosine_matrix()

Clustering the topics into N clusters, e.g. 50 clusters, using Spectral_ Clustering.

>>> clusters = robust_model.cluster_topics(clusters_n = 50)

... still editing! To be continued...

.. _Chuang:
.. _Spectral:

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution (6.6 MB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page