Skip to main content

Rede Neural Artifical Evolucionária

Project description

RNAE

Rede Neural Artificial Evolucionária

Instalation

$ pip install rnea

ou

$ python setup.py install

Utilização

from numpy.random import shuffle
from numpy import array

from pygenec import binarray2int

from rnae import RNAE
from rnae import IRIS as dados
from rnae import IRIS_NAME


#Normalização dos dados de entrada

entrada = dados[1:,0:-1].astype(float)
for k in range(entrada.shape[1]):
    entrada[:, k] = ((entrada[:, k] - entrada[:, k].min()) /
                    (entrada[:, k].max() - entrada[:, k].min())
                    )

#Resultado esperado, em inteiro.

saidas = dados[1:,-1]

saidas = array([list(map(int, list("{0:2b}".format(int(s)).replace(" ", "0")))) for s in  saidas])
itrain = array(list(range(saidas.shape[0])))
shuffle(itrain)
etrain = entrada[itrain,:]
esaid = saidas[itrain, :]

n = int(esaid.shape[0] * 0.90)

neurons = [4, 4, 2]

rna = RNAE(neurons)
rna.treinamento(etrain[0:n, :], esaid[0:n, :],
             tpop=500, gens=1000, bits=16, pmut=0.1, pcruz=0.6, epidemia=150)

rna.salvar_modelo("./modelos/rnae_iris.txt")
rna = RNAE.carregar_modelo("./modelos/rnae_iris.txt")
pred = rna.propagacao(etrain[n:,:])
expct = esaid[n:]
expct = binarray2int(expct).reshape((expct.shape[0], 1))

pred = binarray2int(pred).reshape((expct.shape[0], 1))
print("\n")
print([IRIS_NAME[i] for i in pred.flatten().astype(int)])
print("\n")
print([IRIS_NAME[i] for i in expct.flatten().astype(int)])
print("\n")

accu = 100 * sum(pred == expct) / expct.size
print("Acuracia {} %".format(accu))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rnae-1.0.1.tar.gz (4.0 kB view details)

Uploaded Source

Built Distribution

rnae-1.0.1-py3-none-any.whl (5.8 kB view details)

Uploaded Python 3

File details

Details for the file rnae-1.0.1.tar.gz.

File metadata

  • Download URL: rnae-1.0.1.tar.gz
  • Upload date:
  • Size: 4.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.6.9

File hashes

Hashes for rnae-1.0.1.tar.gz
Algorithm Hash digest
SHA256 263bfca958c3fdb8d14205a102a8ec5f150c4d49931eceb18cd89df1093575c8
MD5 bda9480abc1b248582719a868f51647c
BLAKE2b-256 47d94a638dfb0170424162f4f868875f753ee8aab7aa93c2c7d1b402a10e85f2

See more details on using hashes here.

File details

Details for the file rnae-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: rnae-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 5.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.6.9

File hashes

Hashes for rnae-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 b97b15ce8ece339962d052363963a60497f1637cf2d61bc77e5d757f8bbcad7d
MD5 10224489120f4fe49549f5a4895b53e5
BLAKE2b-256 cb9378aa8503b606c3cf01f8411a67b9d665e2e36c7213e32d5e3dcf5047cb55

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page