Skip to main content

Rede Neural Artifical Evolucionária

Project description


Rede Neural Artificial Evolucionária


$ pip install rnea


$ python install


from numpy.random import shuffle
from numpy import array

from pygenec import binarray2int

from rnae import RNAE
from rnae import IRIS as dados
from rnae import IRIS_NAME

#Normalização dos dados de entrada

entrada = dados[1:,0:-1].astype(float)
for k in range(entrada.shape[1]):
    entrada[:, k] = ((entrada[:, k] - entrada[:, k].min()) /
                    (entrada[:, k].max() - entrada[:, k].min())

#Resultado esperado, em inteiro.

saidas = dados[1:,-1]

saidas = array([list(map(int, list("{0:2b}".format(int(s)).replace(" ", "0")))) for s in  saidas])
itrain = array(list(range(saidas.shape[0])))
etrain = entrada[itrain,:]
esaid = saidas[itrain, :]

n = int(esaid.shape[0] * 0.90)

neurons = [4, 4, 2]

rna = RNAE(neurons)
rna.treinamento(etrain[0:n, :], esaid[0:n, :],
             tpop=500, gens=1000, bits=16, pmut=0.1, pcruz=0.6, epidemia=150)

rna = RNAE.carregar_modelo("./modelos/rnae_iris.txt")
pred = rna.propagacao(etrain[n:,:])
expct = esaid[n:]
expct = binarray2int(expct).reshape((expct.shape[0], 1))

pred = binarray2int(pred).reshape((expct.shape[0], 1))
print([IRIS_NAME[i] for i in pred.flatten().astype(int)])
print([IRIS_NAME[i] for i in expct.flatten().astype(int)])

accu = 100 * sum(pred == expct) / expct.size
print("Acuracia {} %".format(accu))

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rnae-1.0.1.tar.gz (4.0 kB view hashes)

Uploaded source

Built Distribution

rnae-1.0.1-py3-none-any.whl (5.8 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page