Skip to main content

Rede Neural Artifical Evolucionária

Project description

RNAE

Rede Neural Artificial Evolucionária

Instalation

$ pip install rnea

ou

$ python setup.py install

Utilização

from numpy.random import shuffle
from numpy import array

from pygenec import binarray2int

from rnae import RNAE
from rnae import IRIS as dados
from rnae import IRIS_NAME


#Normalização dos dados de entrada

entrada = dados[1:,0:-1].astype(float)
for k in range(entrada.shape[1]):
    entrada[:, k] = ((entrada[:, k] - entrada[:, k].min()) /
                    (entrada[:, k].max() - entrada[:, k].min())
                    )

#Resultado esperado, em inteiro.

saidas = dados[1:,-1]

saidas = array([list(map(int, list("{0:2b}".format(int(s)).replace(" ", "0")))) for s in  saidas])
itrain = array(list(range(saidas.shape[0])))
shuffle(itrain)
etrain = entrada[itrain,:]
esaid = saidas[itrain, :]

n = int(esaid.shape[0] * 0.90)

neurons = [4, 4, 2]

rna = RNAE(neurons)
rna.treinamento(etrain[0:n, :], esaid[0:n, :],
             tpop=500, gens=1000, bits=16, pmut=0.1, pcruz=0.6, epidemia=150)

rna.salvar_modelo("./modelos/rnae_iris.txt")
rna = RNAE.carregar_modelo("./modelos/rnae_iris.txt")
pred = rna.propagacao(etrain[n:,:])
expct = esaid[n:]
expct = binarray2int(expct).reshape((expct.shape[0], 1))

pred = binarray2int(pred).reshape((expct.shape[0], 1))
print("\n")
print([IRIS_NAME[i] for i in pred.flatten().astype(int)])
print("\n")
print([IRIS_NAME[i] for i in expct.flatten().astype(int)])
print("\n")

accu = 100 * sum(pred == expct) / expct.size
print("Acuracia {} %".format(accu))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rnae-1.0.1.tar.gz (4.0 kB view hashes)

Uploaded source

Built Distribution

rnae-1.0.1-py3-none-any.whl (5.8 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page