Skip to main content

RNL - Robot Navigation Learning

Project description

Robot Navigation Learning

MicroVault

Documentation Status PyPI codecov CI

End-to-end Deep Reinforcement Learning for Real-World Robotics Navigation in Pytorch

This project uses Deep Reinforcement Learning (DRL) to train a robot to move in unfamiliar environments. The robot learns to make decisions on its own, interacting with the environment, and gradually becomes better and more efficient at navigation.

How to Use

Installation and usage mode.

  • Install with pip:
pip install rnl
  • Use train:
import numpy as np
import rnl as vault

# 1.step -> config robot
param_robot = vault.robot(
    base_radius=0.033,  # (m)
    vel_linear=[0.0, 2.0],  # [min, max]
    val_angular=[1.0, 2.0],  # [min, max]
    wheel_distance=0.16,  # (cm)
    weight=1.0,  # robot (kg)
    threshold=0.01,  # distance for obstacle avoidance (cm)
)

# 2.step -> config sensors [for now only lidar sensor!!]
param_sensor = vault.sensor(
    fov=4 * np.pi,
    num_rays=20,
    min_range=0.0,
    max_range=6.0,
)

# 3.step -> config env
param_env = vault.make(
    map_file="None", # map file yaml (Coming soon)
    random_mode="normal",  # hard or normal (Coming soon)
    timestep=1000,  # max timestep
    grid_dimension=5,  # size grid
    friction=0.4,  # grid friction
    porcentage_obstacles=0.1
)

# 4.step -> config train robot
model = vault.Trainer(
    param_robot, param_sensor, param_env, pretrained_model=False
)

# 5.step -> train robot
model.learn(
    batch_size=64,
    lr=0.0001,
    seed=1,
    num_envs=2,
    device="cpu",
    target_score=200,
    checkpoint=100,
    checkpoint_path="checkpoints",
    hidden_size=[800, 600],
)
  • Use inference:
import numpy as np
import rnl as vault

# 1.step -> config robot
param_robot = vault.robot(
    base_radius=0.033,  # (m)
    vel_linear=[0.0, 2.0],  # [min, max]
    val_angular=[1.0, 2.0],  # [min, max]
    wheel_distance=0.16,  # (cm)
    weight=1.0,  # robot (kg)
    threshold=0.01,  # distance for obstacle avoidance (cm)
)

# 2.step -> config sensors [for now only lidar sensor!!]
param_sensor = vault.sensor(
    fov=4 * np.pi,
    num_rays=20,
    min_range=0.0,
    max_range=6.0,
)

# 3.step -> config env
param_env = vault.make(
    map_file="None", # map file yaml (Coming soon)
    random_mode="normal",  # hard or normal (Coming soon)
    timestep=1000,  # max timestep
    grid_dimension=5,  # size grid
    friction=0.4,  # grid friction
    porcentage_obstacles=0.1
)

# 4.step -> config render
param_render = vault.render(fps=100, controller=True, rgb_array=True)


# 5.step -> config train robot
model = vault.Trainer(
    param_robot, param_sensor, param_env, pretrained_model=False
)

# 6.step -> run robot
model.run()
  • Use demo:
python train.py

License

This project is licensed under the MIT license - see archive LICENSE for details.

Contact and Contribution

The project is still under development and may have some bugs. If you encounter any problems or have suggestions, feel free to open an issue or send an email to: Nicolas Alan - grottimeireles@gmail.com.

TODO:

  • Add map file yaml
  • Add random mode (hard or normal)
  • Create Integration ROS and (Gazebo, webots)
  • Create Integration with OpenAI o1-preview

Acknowledgments

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rnl-0.2.33.tar.gz (56.3 kB view details)

Uploaded Source

Built Distribution

rnl-0.2.33-py3-none-any.whl (64.4 kB view details)

Uploaded Python 3

File details

Details for the file rnl-0.2.33.tar.gz.

File metadata

  • Download URL: rnl-0.2.33.tar.gz
  • Upload date:
  • Size: 56.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.6 Darwin/23.5.0

File hashes

Hashes for rnl-0.2.33.tar.gz
Algorithm Hash digest
SHA256 f0286682e9f9a2ff49aa8dc481e1b345c1f679c62af28132ebbf256d3ec77d9f
MD5 b53dfc41c1f4f7ae9b06ee309909014a
BLAKE2b-256 a728d015f50aef8b9c09627d741464080d3881739ed0988cb69bc33cd35d00a0

See more details on using hashes here.

File details

Details for the file rnl-0.2.33-py3-none-any.whl.

File metadata

  • Download URL: rnl-0.2.33-py3-none-any.whl
  • Upload date:
  • Size: 64.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.6 Darwin/23.5.0

File hashes

Hashes for rnl-0.2.33-py3-none-any.whl
Algorithm Hash digest
SHA256 d18d9250495401403affe860c0b2c99e75550598aad6f044e6553c91fdc9954f
MD5 2ce725b66cd383889517c33f15a1e179
BLAKE2b-256 40c80537ae692c89cf939998e405fb3ec06b1cea953b72963416eb001d3a662b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page