Skip to main content

RNL - Robot Navigation Learning

Project description

Robot Navigation Learning

MicroVault

Documentation Status PyPI codecov CI

End-to-end Deep Reinforcement Learning for Real-World Robotics Navigation in Pytorch

This project uses Deep Reinforcement Learning (DRL) to train a robot to move in unfamiliar environments. The robot learns to make decisions on its own, interacting with the environment, and gradually becomes better and more efficient at navigation.

How to Use

Installation and usage mode.

  • Install with pip:
pip install rnl
  • Use train:
import numpy as np
import rnl as vault

# 1.step -> config robot
param_robot = vault.robot(
    base_radius=0.033,  # (m)
    vel_linear=[0.0, 2.0],  # [min, max]
    val_angular=[1.0, 2.0],  # [min, max]
    wheel_distance=0.16,  # (cm)
    weight=1.0,  # robot (kg)
    threshold=0.01,  # distance for obstacle avoidance (cm)
)

# 2.step -> config sensors [for now only lidar sensor!!]
param_sensor = vault.sensor(
    fov=4 * np.pi,
    num_rays=20,
    min_range=0.0,
    max_range=6.0,
)

# 3.step -> config env
param_env = vault.make(
    map_file="None", # map file yaml (Coming soon)
    random_mode="normal",  # hard or normal (Coming soon)
    timestep=1000,  # max timestep
    grid_dimension=5,  # size grid
    friction=0.4,  # grid friction
    porcentage_obstacles=0.1
)

# 4.step -> config train robot
model = vault.Trainer(
    param_robot, param_sensor, param_env, pretrained_model=False
)

# 5.step -> train robot
model.learn(
    batch_size=64,
    lr=0.0001,
    seed=1,
    num_envs=2,
    device="cpu",
    target_score=200,
    checkpoint=100,
    checkpoint_path="checkpoints",
    hidden_size=[800, 600],
)
  • Use inference:
import numpy as np
import rnl as vault

# 1.step -> config robot
param_robot = vault.robot(
    base_radius=0.033,  # (m)
    vel_linear=[0.0, 2.0],  # [min, max]
    val_angular=[1.0, 2.0],  # [min, max]
    wheel_distance=0.16,  # (cm)
    weight=1.0,  # robot (kg)
    threshold=0.01,  # distance for obstacle avoidance (cm)
)

# 2.step -> config sensors [for now only lidar sensor!!]
param_sensor = vault.sensor(
    fov=4 * np.pi,
    num_rays=20,
    min_range=0.0,
    max_range=6.0,
)

# 3.step -> config env
param_env = vault.make(
    map_file="None", # map file yaml (Coming soon)
    random_mode="normal",  # hard or normal (Coming soon)
    timestep=1000,  # max timestep
    grid_dimension=5,  # size grid
    friction=0.4,  # grid friction
    porcentage_obstacles=0.1
)

# 4.step -> config render
param_render = vault.render(fps=100, controller=True, rgb_array=True)


# 5.step -> config train robot
model = vault.Trainer(
    param_robot, param_sensor, param_env, pretrained_model=False
)

# 6.step -> run robot
model.run()
  • Use demo:
python train.py

License

This project is licensed under the MIT license - see archive LICENSE for details.

Contact and Contribution

The project is still under development and may have some bugs. If you encounter any problems or have suggestions, feel free to open an issue or send an email to: Nicolas Alan - grottimeireles@gmail.com.

TODO:

  • Add map file yaml
  • Add random mode (hard or normal)
  • Create Integration ROS and (Gazebo, webots)
  • Create Integration with OpenAI o1-preview

Acknowledgments

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rnl-0.3.1.tar.gz (56.3 kB view details)

Uploaded Source

Built Distribution

rnl-0.3.1-py3-none-any.whl (64.4 kB view details)

Uploaded Python 3

File details

Details for the file rnl-0.3.1.tar.gz.

File metadata

  • Download URL: rnl-0.3.1.tar.gz
  • Upload date:
  • Size: 56.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.6 Darwin/23.5.0

File hashes

Hashes for rnl-0.3.1.tar.gz
Algorithm Hash digest
SHA256 5240f46ed5c108c609369b72662fa5d401d21780429bf4e09c6319272642499d
MD5 98b09a13b4a838c7573a24da1ebaa070
BLAKE2b-256 f8c29d6c01e7abe2c7435f3779dde358384c98e51792828e05733f7fc6bca73d

See more details on using hashes here.

File details

Details for the file rnl-0.3.1-py3-none-any.whl.

File metadata

  • Download URL: rnl-0.3.1-py3-none-any.whl
  • Upload date:
  • Size: 64.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.12.6 Darwin/23.5.0

File hashes

Hashes for rnl-0.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 5a2cb7d2f77433e0afb4032ebac43b29a5132b6655a215ea9902a9d75391c4f8
MD5 c6c20337cf9cc9094fd0a31bd926bdaa
BLAKE2b-256 3d603a48247338d3a200afc56f1710611d083398ebd0988d81b56946347020bc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page