Skip to main content

Robotics Transformer Inference in Tensorflow. RT-1, RT-2, RT-X, PALME.

Project description

Code Coverage

Library for Robotic Transformers. RT-1 and RT-X-1.

Installation:

Requirements: python >= 3.9

Using PyPI

pip install robo-transformers

From Source

Clone this repo: git clone https://github.com/sebbyjp/robo_transformers.git

cd robo_transformers

Use poetry

pip install poetry && poetry config virtualenvs.in-project true

Install dependencies: poetry install source .venv/bin/activate

Run RT-1 Inference On Demo Images.

python -m robo_transformers.rt1.rt1_inference

See options:

python -m robo_transformers.rt1.rt1_inference --help

Notes

action, next_policy_state = model.act(time_step, curr_policy_state)

policy state is internal state of network:

In this case it is a 6-frame window of past observations,actions and the index in time.

{'action_tokens': ArraySpec(shape=(6, 11, 1, 1), dtype=dtype('int32'), name='action_tokens'),
 'image': ArraySpec(shape=(6, 256, 320, 3), dtype=dtype('uint8'), name='image'),
 'step_num': ArraySpec(shape=(1, 1, 1, 1), dtype=dtype('int32'), name='step_num'),
 't': ArraySpec(shape=(1, 1, 1, 1), dtype=dtype('int32'), name='t')}

time_step is the input from the environment:

{'discount': BoundedArraySpec(shape=(), dtype=dtype('float32'), name='discount', minimum=0.0, maximum=1.0),
 'observation': {'base_pose_tool_reached': ArraySpec(shape=(7,), dtype=dtype('float32'), name='base_pose_tool_reached'),
                 'gripper_closed': ArraySpec(shape=(1,), dtype=dtype('float32'), name='gripper_closed'),
                 'gripper_closedness_commanded': ArraySpec(shape=(1,), dtype=dtype('float32'), name='gripper_closedness_commanded'),
                 'height_to_bottom': ArraySpec(shape=(1,), dtype=dtype('float32'), name='height_to_bottom'),
                 'image': ArraySpec(shape=(256, 320, 3), dtype=dtype('uint8'), name='image'),
                 'natural_language_embedding': ArraySpec(shape=(512,), dtype=dtype('float32'), name='natural_language_embedding'),
                 'natural_language_instruction': ArraySpec(shape=(), dtype=dtype('O'), name='natural_language_instruction'),
                 'orientation_box': ArraySpec(shape=(2, 3), dtype=dtype('float32'), name='orientation_box'),
                 'orientation_start': ArraySpec(shape=(4,), dtype=dtype('float32'), name='orientation_in_camera_space'),
                 'robot_orientation_positions_box': ArraySpec(shape=(3, 3), dtype=dtype('float32'), name='robot_orientation_positions_box'),
                 'rotation_delta_to_go': ArraySpec(shape=(3,), dtype=dtype('float32'), name='rotation_delta_to_go'),
                 'src_rotation': ArraySpec(shape=(4,), dtype=dtype('float32'), name='transform_camera_robot'),
                 'vector_to_go': ArraySpec(shape=(3,), dtype=dtype('float32'), name='vector_to_go'),
                 'workspace_bounds': ArraySpec(shape=(3, 3), dtype=dtype('float32'), name='workspace_bounds')},
 'reward': ArraySpec(shape=(), dtype=dtype('float32'), name='reward'),
 'step_type': ArraySpec(shape=(), dtype=dtype('int32'), name='step_type')}

action:

{'base_displacement_vector': BoundedArraySpec(shape=(2,), dtype=dtype('float32'), name='base_displacement_vector', minimum=-1.0, maximum=1.0),
 'base_displacement_vertical_rotation': BoundedArraySpec(shape=(1,), dtype=dtype('float32'), name='base_displacement_vertical_rotation', minimum=-3.1415927410125732, maximum=3.1415927410125732),
 'gripper_closedness_action': BoundedArraySpec(shape=(1,), dtype=dtype('float32'), name='gripper_closedness_action', minimum=-1.0, maximum=1.0),
 'rotation_delta': BoundedArraySpec(shape=(3,), dtype=dtype('float32'), name='rotation_delta', minimum=-1.5707963705062866, maximum=1.5707963705062866),
 'terminate_episode': BoundedArraySpec(shape=(3,), dtype=dtype('int32'), name='terminate_episode', minimum=0, maximum=1),
 'world_vector': BoundedArraySpec(shape=(3,), dtype=dtype('float32'), name='world_vector', minimum=-1.0, maximum=1.0)}

TODO:

  • Render action, policy_state, observation specs in something prettier like pandas data frame.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

robo_transformers-0.1.5.tar.gz (4.1 MB view details)

Uploaded Source

Built Distribution

robo_transformers-0.1.5-py3-none-any.whl (4.1 MB view details)

Uploaded Python 3

File details

Details for the file robo_transformers-0.1.5.tar.gz.

File metadata

  • Download URL: robo_transformers-0.1.5.tar.gz
  • Upload date:
  • Size: 4.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.11.6 Darwin/23.1.0

File hashes

Hashes for robo_transformers-0.1.5.tar.gz
Algorithm Hash digest
SHA256 d540052f00b358c183f85e31a0f8c50b980f120f5601d63fb05aa4971af69be0
MD5 70f221b3fc9a4b69379ecbb8994602be
BLAKE2b-256 50ac9088f802232a981ae11eb8a0cff656c7ae099d8f313b10ca8c1110ee7797

See more details on using hashes here.

Provenance

File details

Details for the file robo_transformers-0.1.5-py3-none-any.whl.

File metadata

File hashes

Hashes for robo_transformers-0.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 b8f8098a655bbf6d5cec03a8c40d350019232d64688edb28e7bbe19fb740a5db
MD5 bc01ca0cf5ebfd7cae2df9336c2a7f9e
BLAKE2b-256 a3be202df08a954e94db08f0a5f56aeb193f0735c87fd9310441a0fa719632e1

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page