Skip to main content

The Robust Deep Learning Library

Project description

The Robust Deep Learning Library

TRAIN OR FINE-TUNE

Train your model from scratch or fine-tune a pretrained model using the losses provided in this library to improve out-of-distribution detection and uncertainty estimation performances.

CALIBRATE

Calibrate your model to produce enhanced uncertainy estimations.

DETECT

Detect out-of-distribution data using the defined score type and threshold.

Features

  • Model Independent:

Use models from timm library or whatever you want.

  • Data Independent:

Most cases work for any type of media (e.g., image, text, audio, and others).

  • Large-Scale Models and Data:

Train using large-scale models and data (e.g., ImageNet).

  • Efficient Inferences:

The trained models are as efficient as the ones trained using the cross-entropy loss.

  • Hyperparameter-Free:

There is no hyperparameter to tune. "You only train once" (YOTO).

  • Standard Interface:

Use the same API to train models with improved robustness using different losses.

  • No Need for Additional Data:

The losses used in this library do not require collecting or using additional data.

  • Temperature Calibration:

Calculate the Uncertainty Estimation and update the temperature of the output last layer.

  • Scalability: More data, Bigger Models, Better Results!

Entropic losses perform better and better as the size of the data and model increase.

  • Threshold Computation:

Compute the threshold for deciding regarding out-of-distribution examples.

  • Scores Computation:

Compute the scores opting from a set of many different types available.

  • Detect Out-of-Distribution:

Detect out-of-distribution examples using the computed scores.

  • State-of-the-art:

SOTA results for out-of-distribution detection and uncertainty estimation.

Results

Model=ResNet18, Dataset=ImageNet, Near OOD=ImageNet-O

Loss [Score] Class (ACC) Near OOD (AUROC)
Cross-Entropy [MPS] 69.9 52.4
DisMax [MMLES] 69.6 75.8

More ImageNet results comming soon...

For results regarding CIFAR10 and CIFAR100, please see the DisMax paper:

https://arxiv.org/abs/2205.05874

Installation

pip install robust-deep-learning

Usage

# Import the robust deep learning library as rdl
import robust_deep_learning as rdl

#####################################################################################################
#####################################################################################################
# Training or Fine-tuning
#####################################################################################################
#####################################################################################################

#########################################################
# Option 1: Creating a custom model and defining the loss
#########################################################

# Create from a model definition file. 
# For example, import a class "Model" from a model definition file.
model = Model()
# Load a pretrained model if fine-tuning rather than training from scratch (random weights).
# model.load_state_dict(torch.load(pre_trained_file_name, map_location="cuda:" + str(args.gpu)))

# Chance the output last layer of the model with the desired loss first part.
# If the name of the output last layer of the model is unknown, print it with "print(model)".
# For example, if the output last layer is called "classifier":
# "model.classifier = nn.Linear(num_features, num_classes)"
# Then, replace this output layer (usually a linear layer) by adding the following line: 
model.classifier = rdl.DisMaxLossFirstPart(num_features, num_classes)

# Replace the Cross-Entropy Loss.
# The first argument is the name of the output last layer of the model used above.
# In case of training using a not too constrained model on image data, pass an add-on.
# Currently, only DisMax has one add-on called "FPR".
# Otherwise, do not pass add-on or simple pass "add_on=None". 
criterion = rdl.DisMaxLossSecondPart(model.classifier, add_on="FPR", gpu=None)

#######################################################
# Option 2: Creating a timm model and defining the loss
#######################################################

# For using a model from timm lib, use "create_model" functionality.
# It is possible to start from a pretrained model to fine-tune using the desired loss.
model = timm.create_model('resnet18', pretrained=False)

# Chance the output last layer of the model with the desired loss first part.
# If the name of the output last layer of the model is unknown, print it with "print(model)".
# For example, if the output last layer is called "fc":
# "model.fc = nn.Linear(num_features, num_classes)"
# Then, replace this output layer (usually a linear layer) by adding the following line: 
model.fc = rdl.DisMaxLossFirstPart(model.get_classifier().in_features, num_classes)

# Replace the Cross-Entropy Loss.
# The first argument is the name of the output last layer of the model used above.
# In case of training using a not too constrained model on image data, pass an add-on.
# Currently, only DisMax has one add-on called "FPR".
# Otherwise, do not pass add-on or simple pass "add_on=None". 
criterion = rdl.DisMaxLossSecondPart(model.fc, add_on="FPR", gpu=None)

############################
# Checking the training loop
############################

for epoch in epochs:

    # Training loop
    for inputs, targets in in_data_train_loader:

        # In the training loop, add the line below for preprocessing before forwarding.
        # This is only required if using add_on other than None. Otherwise, this line is not needed.
        inputs, targets = criterion.preprocess(inputs, targets) 

        # The three below lines are usually found in the training loop!
        # These lines must not be changed!
        outputs = model(inputs)
        loss = criterion(outputs, targets)
        loss.backward()

#####################################################################################################
#####################################################################################################
# Uncertainty Estimation
#####################################################################################################
#####################################################################################################

#############
# Calibrating
#############

# Get outputs, labels, accuracy, expected calibration error (ECE), and negative log-likelihood (NLL).
results = rdl.get_outputs_labels_and_metrics(model, in_data_val_loader, gpu=None)

# Calculate probabilities and verify the values returned above. 
probabilities = torch.nn.Softmax(dim=1)(results["outputs"])
print(probabilities)
print(results["acc"], results["ece"], results["nll"])

# Calibrate the temperature passing the output last layer, the model, and the validation set.
# Choose the metric to optimize. For example, "ECE" (the only option for now).
rdl.calibrate_temperature(model.classifier, model, in_data_val_loader, optimize="ECE", gpu=None)
#rdl.calibrate_temperature(model.fc, model, in_data_val_loader, optimize="ECE")

# Verify the novel value of the temperature of the output last layer.
print(model.classifier.temperature)

######################
# Verifing calibration
######################

# Get the results again using the calibrated model.
results = rdl.get_outputs_labels_and_metrics(model, in_data_val_loader, gpu=None)

# Verifiy the probabilities, ECE, and NLL are improved regarding the now calibrated model.
probabilities = torch.nn.Softmax(dim=1)(results["outputs"])
print(probabilities)
print(results["acc"], results["ece"],= results["nll"])

####################################################################################################
####################################################################################################
# Out-of-Distribution Detection
####################################################################################################
####################################################################################################

########################
# Estimating performance
########################

# Define a score type. Typically, the best/recommended option for the loss you are using.
score_type = "MMLES"

# Evaluate the out-of-distribution detection performance passing loaders.
ood_metrics = rdl.get_ood_metrics(
    model, in_data_val_loader, out_data_loader, score_type, fpr=0.05, gpu=None)

# Optionally, first get in-data scores:
results = rdl.get_outputs_labels_and_metrics(model, in_data_val_loader, gpu=None)
in_data_scores = rdl.get_scores(results["outputs"], score_type)

# Second, get out-data scores:
results = rdl.get_outputs_labels_and_metrics(model, out_data_loader, gpu=None)
out_data_scores = rdl.get_scores(results["outputs"], score_type)

# Then, finally, evaluate the out-of-distribution detection performance passing scores.
ood_metrics = rdl.get_ood_metrics_from_scores(in_data_scores, out_data_scores, fpr=0.05)

######################################
# Detecting (still testing this part))
######################################

# Before detecting, it is necessary to compute the thresholds.
thresholds = rdl.get_thresholds(model, in_data_val_loader, score_type, gpu=None)

# Optionaly, it is possible to compute the threshold using in-data scores.
#thresholds = rdl.get_thresholds(results["outputs"], score_types="MMLES")
thresholds = rdl.get_thresholds_from_scores(in_data_scores) # guarder 

# After calculating thresholds, detection may be performed.
# Some test input may be obtained using: input = next(iter(in_data_val_loader))
ood_detections = rdl.get_ood_detections(model, inputs, thresholds, fpr="0.05", gpu=None)

Losses and Scores

The following losses are implemented:

The following scores are implemented:

Reproducibility

Please, move to the data directory and run all the prepare data bash scripts:

# Download and prepare out-of-distrbution data for CIFAR10 and CIFAR100 datasets.
./prepare-cifar.sh
# Download and prepare out-of-distrbution data for ImageNet.
./prepare-imagenet.sh
./run_cifar100_densenetbc100.sh*
./run_cifar100_resnet34.sh*
./run_cifar100_wideresnet2810.sh*
./run_cifar10_densenetbc100.sh*
./run_cifar10_resnet34.sh*
./run_cifar10_wideresnet2810.sh*
./run_imagenet1k_resnet18.sh*
./analize.sh

Citing

BibTeX

Please, cite our papers if you use our losses in your work:

@INPROCEEDINGS{9533899,
  author={Macêdo, David and Ren, Tsang Ing and Zanchettin, Cleber and Oliveira, 
  Adriano L. I. and Ludermir, Teresa},
  booktitle={2021 International Joint Conference on Neural Networks (IJCNN)}, 
  title={Entropic Out-of-Distribution Detection}, 
  year={2021},
  pages={1-8},
  doi={10.1109/IJCNN52387.2021.9533899}}
@ARTICLE{9556483,
  author={Macêdo, David and Ren, Tsang Ing and Zanchettin, Cleber and Oliveira, 
  Adriano L. I. and Ludermir, Teresa},
  journal={IEEE Transactions on Neural Networks and Learning Systems}, 
  title={Entropic Out-of-Distribution Detection:
  Seamless Detection of Unknown Examples}, 
  year={2022},
  volume={33},
  number={6},
  pages={2350-2364},
  doi={10.1109/TNNLS.2021.3112897}}
@article{DBLP:journals/corr/abs-2105-14399,
  author    = {David Mac{\^{e}}do and
               Teresa Bernarda Ludermir},
  title     = {Enhanced Isotropy Maximization Loss: 
  Seamless and High-Performance Out-of-Distribution Detection
  Simply Replacing the SoftMax Loss},
  journal   = {CoRR},
  volume    = {abs/2105.14399},
  year      = {2021},
  url       = {https://arxiv.org/abs/2105.14399},
  eprinttype = {arXiv},
  eprint    = {2105.14399},
  timestamp = {Wed, 02 Jun 2021 11:46:42 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2105-14399.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{DBLP:journals/corr/abs-2205-05874,
  author    = {David Mac{\^{e}}do and
               Cleber Zanchettin and
               Teresa Bernarda Ludermir},
  title     = {Distinction Maximization Loss:
  Efficiently Improving Out-of-Distribution Detection and Uncertainty Estimation
  Simply Replacing the Loss and Calibrating},
  journal   = {CoRR},
  volume    = {abs/2205.05874},
  year      = {2022},
  url       = {https://doi.org/10.48550/arXiv.2205.05874},
  doi       = {10.48550/arXiv.2205.05874},
  eprinttype = {arXiv},
  eprint    = {2205.05874},
  timestamp = {Tue, 17 May 2022 17:31:03 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2205-05874.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{DBLP:journals/corr/abs-2208-03566,
  author    = {David Mac{\^{e}}do},
  title     = {Towards Robust Deep Learning using Entropic Losses},
  journal   = {CoRR},
  volume    = {abs/2208.03566},
  year      = {2022},
  url       = {https://doi.org/10.48550/arXiv.2208.03566},
  doi       = {10.48550/arXiv.2208.03566},
  eprinttype = {arXiv},
  eprint    = {2208.03566},
  timestamp = {Wed, 10 Aug 2022 14:49:54 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2208-03566.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

robust_deep_learning-0.5.0-py3-none-any.whl (19.7 kB view details)

Uploaded Python 3

File details

Details for the file robust_deep_learning-0.5.0-py3-none-any.whl.

File metadata

File hashes

Hashes for robust_deep_learning-0.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 70b40a3d522723757e9696c33d8ee1553190abcd8eb4abd09c2a4b64c0d0fa40
MD5 424a89d3650aaf2df220a301628c317d
BLAKE2b-256 a2d83376f73ae491f0ea05202534d456aadb5e8de1f57a2dcac4125297d65600

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page