A robust EM clustering algorithm for Gaussian mixture models
Project description
A Robust EM Clustering Algorithm for Gaussian Mixture Models
Description
Python implementation of Robust EM Clustering for Gaussian Mixture Models[1]. (Click here to view the paper for more detail.)
-
robustgmm.robustgmmScikit-learn API style for Robust GMM
-
robustgmm.generatorGenerator for synthetic data from mixture of gaussian.
For more detail to use, see the example below or paper_example.py
-
Reference
MS Yang, A robust EM clustering algorithm for gaussian mixture models, Pattern Recognit., 45 (2012), pp. 3950-3961
Install
-
Install from PyPI
pip install robustgmm
-
Install from Github
pip install git+https://github.com/HongJea-Park/robust_EM_for_gmm.git
Example
All examples are conducted to compare with the experimental results of the paper.
# For more detail, refer ./test/paper_example.py
import numpy as np
from robustgmm import RobustGMM
from robustgmm import Generator_Multivariate_Normal
# Generate data from 2 multivariate normal distribution with fixed random seed
np.random.seed(0)
real_means = np.array([[.0, .0], [20, .0]])
real_covs = np.array([[[1, .0], [.0, 1]],
[[9, .0], [.0, 9]]])
mix_prob = np.array([.5, .5])
generator = Generator_Multivariate_Normal(means=real_means,
covs=real_covs,
mix_prob=mix_prob)
X = generator.get_sample(800)
# GMM using robust EM Algorithm
rgmm = RobustGMM()
rgmm.fit(X)
Figures for each examples in paper
-
Example 1
-
Example 2
-
Example 3
-
Example 4
-
Example 5
-
Example 6
-
Example 7
-
Computational time cost
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file robustgmm-1.0.2.tar.gz.
File metadata
- Download URL: robustgmm-1.0.2.tar.gz
- Upload date:
- Size: 6.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
2f80e5f93a417b6af0549cf53b35ebfac6331532f24705d09c4f208ded97f7a9
|
|
| MD5 |
e0ea55f8307ff715ecc024db3643cdee
|
|
| BLAKE2b-256 |
b82f22020d1fa5e387f72f9d6b997730f4436981f2f9308f5b0429aebb65da82
|
File details
Details for the file robustgmm-1.0.2-py3-none-any.whl.
File metadata
- Download URL: robustgmm-1.0.2-py3-none-any.whl
- Upload date:
- Size: 5.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
f0f1cdcf76ec1c83361cf0f901278dffe44a3b1153db5a58920047a5b4b02557
|
|
| MD5 |
098add13c4a2d8e52ac4351b52b59b92
|
|
| BLAKE2b-256 |
9ac9cd0448d26871728da148b06af02be23bac6801db96fd9f76271b6ef50710
|