Skip to main content

An efficient framework for establishing a baseline for standard and adversarial machine learning training projects

Project description

Robustness Framework

Robustness Framework

A robustness framework for baseline of standard and adversarial machine learning research projects

PyPI - Python Version PyPI Status Conda MIT License

The robustness framework is based on top-tier machine learning libraries based on Pytorch. Additionally, it allows for embedding different model architectures and training processes in addition to fixing all research issues. This framework integrates the following libraries:

  • Pytorch-Lightning
  • Hydra
  • torchattacks

The following architectures are covered in this framework and other networks will be added as needed:

  • MKToyNet
  • LeNet
  • DenseNet
  • ResNet
  • WideResNet

The logging system of this framework is also customizable and resolves all your ideas. As a result, we can take advantage of the efficiency of the following libraries:

  • TorchMetrics
  • Loggings
  • Neptune
  • Comet
  • MLFlow
  • ...

Installation

To install this interesting framework for standard and adversarial machine learning, follow the steps below, and don't waste your time developing an efficient baseline. For installing robustness framework, we have two approaches:

1- Manual installation

git clone https://github.com/khalooei/robustness-framework.git
pip install -r requirements.txt

2- Automatic installation

pip install robustness-framework

Usage

You can just follow the main.py file as a main anchor of this framework. You can define your own configurations in configs directory as we defined training_mnist.yaml and training_cifar10.yaml configuration. You can run this framework for running on CIFAR10 dataset as below:

  python main.py +configs=training_cifar10

[TOBE COMPLETED]

Acknowledgements

Thanks to the people behind Pytorch, Lightning, torchattacks hydra, and MLOps libraries whose work inspired this repository. Furthermore, I would like to thank my supervisors Prof. Mohammad Mehdi Homayounpour and Dr. Maryam Amirmazlagnani for their efforts and guidance.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Robustness-Framework-0.0.3.tar.gz (6.1 kB view details)

Uploaded Source

Built Distribution

Robustness_Framework-0.0.3-py2.py3-none-any.whl (7.7 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file Robustness-Framework-0.0.3.tar.gz.

File metadata

  • Download URL: Robustness-Framework-0.0.3.tar.gz
  • Upload date:
  • Size: 6.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.9.6 requests/2.28.1 setuptools/68.0.0 requests-toolbelt/0.10.1 tqdm/4.65.0 CPython/3.8.10

File hashes

Hashes for Robustness-Framework-0.0.3.tar.gz
Algorithm Hash digest
SHA256 6801fdbf62087ad0db3607d8710fdf5a89d44a3aecec5d204d865e2c2efe00e1
MD5 6d14803481aaa2b9c2ecf3999cbff157
BLAKE2b-256 0a21a0944d03a65a29acad1b8ac7847e248afefe235b7821ee30c498549f19f7

See more details on using hashes here.

File details

Details for the file Robustness_Framework-0.0.3-py2.py3-none-any.whl.

File metadata

  • Download URL: Robustness_Framework-0.0.3-py2.py3-none-any.whl
  • Upload date:
  • Size: 7.7 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.9.6 requests/2.28.1 setuptools/68.0.0 requests-toolbelt/0.10.1 tqdm/4.65.0 CPython/3.8.10

File hashes

Hashes for Robustness_Framework-0.0.3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 34b64b0870c6da146da60eed6c9af3e11c07475e8360e0242465d3dffe221bb0
MD5 7f32a899ad7f009ff986c5e65164577e
BLAKE2b-256 536a4defa996c0ac2fa7a0ebe4462be33e98e7157e3954dd686e671f37d4405b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page