Library Machine Learning Python yang simple dan lengkap
Project description
Rocca: Simple Machine Learning
Rocca adalah library Python yang berfokus pada penyediaan implementasi berbagai algoritma machine learning, termasuk metode ensemble, clustering, dan association rule mining.
Fitur
- Algoritma ensemble: Bagging, Random Forest, XGBoost
- Clustering: K-Means
- Association Rule Mining: Apriori
- Decision Tree: Standar Decision Tree dan Regression Tree
Tujuan
Rocca dirancang untuk menyederhanakan proses pembelajaran dan eksplorasi dalam pembelajaran mesin. Dengan kode yang sederhana dan mudah dipahami, Rocca bertujuan untuk menjadi alat bantu yang efektif bagi mereka yang baru memulai atau sedang belajar tentang pembelajaran mesin.
Instalasi
Untuk menginstal Rocca, cukup gunakan pip:
pip install rocca
Penggunaan
Berikut adalah beberapa contoh penggunaan library Rocca:
from rocca.clustering import KMeans
model = KMeans(k=3)
model.fit(X)
labels = model.get_cluster_labels()
Source Code
Akses source codenya di GitHub.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file rocca-0.1.0.tar.gz
.
File metadata
- Download URL: rocca-0.1.0.tar.gz
- Upload date:
- Size: 27.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9a70c656ad7fb2c9e5ea2adbdfd8e67b15df56ffedb747093e617bdde64389d6 |
|
MD5 | e6f1f3713991217d1d7a9c9f37000edd |
|
BLAKE2b-256 | 2f5ab1f770e566e8240e6fbfd3c76fc9a0fcf680e66ad927a4dc00e8e294fc31 |
File details
Details for the file rocca-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: rocca-0.1.0-py3-none-any.whl
- Upload date:
- Size: 38.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f0c60f8c78f5207cae9016ee0214afd9669cd1ef4300e1bbba5e46b86090f0e6 |
|
MD5 | ca6b25d2998f1de254af78b40e897fc1 |
|
BLAKE2b-256 | 547686a166da260af199a5aac445f9f16d1210564b9df840e0dfbd54289280b7 |