Receiver Operating Characteristic (ROC) functions package.
Project description
ROCFunctions basic usage
This repository has the code of a Python package for Receiver Operating Characteristic (ROC) functions.
The ROC framework is used for analysis and tuning of binary classifiers, [Wk1]. (The classifiers are assumed to classify into a positive/true label or a negative/false label. )
For computational introduction to ROC utilization (in Mathematica) see the article "Basic example of using ROC with Linear regression" , [AA1].
The examples below use the package "RandomDataGenerators", [AA2].
Installation
From PyPI.org:
python3 -m pip install ROCFunctions
Usage examples
Properties
Here are some retrieval functions:
import pandas
from ROCFunctions import *
print(roc_functions("properties"))
['FunctionInterpretations', 'FunctionNames', 'Functions', 'Methods', 'Properties']
print(roc_functions("FunctionInterpretations"))
{'TPR': 'true positive rate', 'TNR': 'true negative rate', 'SPC': 'specificity', 'PPV': 'positive predictive value', 'NPV': 'negative predictive value', 'FPR': 'false positive rate', 'FDR': 'false discovery rate', 'FNR': 'false negative rate', 'ACC': 'accuracy', 'AUROC': 'area under the ROC curve', 'FOR': 'false omission rate', 'F1': 'F1 score', 'MCC': 'Matthews correlation coefficient', 'Recall': 'same as TPR', 'Precision': 'same as PPV', 'Accuracy': 'same as ACC', 'Sensitivity': 'same as TPR'}
print(roc_functions("FPR"))
<function FPR at 0x7f7612f48050>
Single ROC record
Definition: A ROC record (ROC-dictionary, or ROC-hash, or ROC-hash-map) is an associative object that has the keys: "FalseNegative", "FalsePositive", "TrueNegative", "TruePositive".Here is an example:
{"FalseNegative": 50, "FalsePositive": 51, "TrueNegative": 60, "TruePositive": 39}
{'FalseNegative': 50,
'FalsePositive': 51,
'TrueNegative': 60,
'TruePositive': 39}
Here we generate a random "dataset" with columns "Actual" and "Predicted" that have the values "true" and "false"and show the summary:
from RandomDataGenerators import *
dfRandomLabels = random_data_frame(200, ["Actual", "Predicted"],
generators={"Actual": ["true", "false"],
"Predicted": ["true", "false"]})
dfRandomLabels.shape
(200, 2)
Here is a sample of the dataset:
print(dfRandomLabels[:4])
Actual Predicted
0 false false
1 false false
2 false false
3 true false
Here we make the corresponding ROC dictionary:
to_roc_dict('true', 'false',
list(dfRandomLabels.Actual.values),
list(dfRandomLabels.Predicted.values))
{'TruePositive': 52,
'FalsePositive': 48,
'TrueNegative': 50,
'FalseNegative': 50}
Multiple ROC records
Here we make random dataset with entries that associated with a certain threshold parameter with three unique values:
dfRandomLabels2 = random_data_frame(200, ["Threshold", "Actual", "Predicted"],
generators={"Threshold": [0.2, 0.4, 0.6],
"Actual": ["true", "false"],
"Predicted": ["true", "false"]})
Remark: Threshold parameters are typically used while tuning Machine Learning (ML) classifiers. Here we find and print the ROC records(dictionaries) for each unique threshold value:
thresholds = list(dfRandomLabels2.Threshold.drop_duplicates())
rocGroups = {}
for x in thresholds:
dfLocal = dfRandomLabels2[dfRandomLabels2["Threshold"] == x]
rocGroups[x] = to_roc_dict('true', 'false',
list(dfLocal.Actual.values),
list(dfLocal.Predicted.values))
rocGroups
{0.4: {'TruePositive': 13,
'FalsePositive': 23,
'TrueNegative': 24,
'FalseNegative': 12},
0.2: {'TruePositive': 18,
'FalsePositive': 11,
'TrueNegative': 19,
'FalseNegative': 18},
0.6: {'TruePositive': 23,
'FalsePositive': 9,
'TrueNegative': 16,
'FalseNegative': 14}}
Application of ROC functions
Here we define a list of ROC functions:
funcs = ["PPV", "NPV", "TPR", "ACC", "SPC", "MCC"]
Here we apply each ROC function to each of the ROC records obtained above:
import pandas
rocRes = { k : {f: roc_functions(f)(v) for f in funcs} for (k, v) in rocGroups.items()}
print(pandas.DataFrame(rocRes))
0.4 0.2 0.6
PPV 0.361111 0.620690 0.718750
NPV 0.666667 0.513514 0.533333
TPR 0.520000 0.500000 0.621622
ACC 0.513889 0.560606 0.629032
SPC 0.510638 0.633333 0.640000
MCC 0.030640 0.134535 0.261666
References
Articles
[Wk1] Wikipedia entry, "Receiver operating characteristic".
[AA1] Anton Antonov, "Basic example of using ROC with Linear regression" , (2016), MathematicaForPrediction at WordPress.
[AA2] Anton Antonov, "Introduction to data wrangling with Raku" , (2021), RakuForPrediction at WordPress.
Packages
[AAp1] Anton Antonov, ROCFunctions Mathematica package, (2016-2022), MathematicaForPrediction at GitHub/antononcube.
[AAp2] Anton Antonov, ROCFunctions R package, (2021), R-packages at GitHub/antononcube.
[AAp3] Anton Antonov, ML::ROCFunctions Raku package, (2022), GitHub/antononcube.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file ROCFunctions-0.1.2.tar.gz
.
File metadata
- Download URL: ROCFunctions-0.1.2.tar.gz
- Upload date:
- Size: 6.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 83f59f9b3a2d1ffc5ae3e6fd956a495ecc4abab67dfd102d63b75d3dec569596 |
|
MD5 | 5f89183a1ed91e318f565b5d9292014f |
|
BLAKE2b-256 | c01562105a6c41e271d4999a8cf7f3ea7e92666b38aace97f89ef3d496c5ce6f |
File details
Details for the file ROCFunctions-0.1.2-py3-none-any.whl
.
File metadata
- Download URL: ROCFunctions-0.1.2-py3-none-any.whl
- Upload date:
- Size: 6.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2753971b1d2498d9512d7d3d5d1dc9bb7ae259d79a9bbe871538536defe49000 |
|
MD5 | 563dc42d45a28c7a7f156310a7a1c741 |
|
BLAKE2b-256 | 30dff8ca502ec5f5132c42d46311c2d9a37a0a7c2bdf9b0b99aec3c58e6d5ae4 |