Skip to main content

Rock classifier deployed on railway and monitored using Weights and Biases!

Project description

Whats-this-rock

This project deploys a telegram bot that classifies rock images into 1 of 7 types.
What's my name?

GitHub Workflow Status GitHub issues GitHub Super-Linter

code-size repo-size top-language

Python Tensorflow

contributions welcome HitCount

This package uses tensorflow to accelerate deep learning experimentation.

MLOps workflow like

  • Experiment Tracking
  • Model Management
  • Hyperparameter Tuning

was all done using Weights & Biases

Additionally, nbdev was used to

  • develop the package
  • produce documentation based on a series of notebooks.
  • CI
  • publishing to PyPi

Inspiration

The common complaint that you need massive amounts of data to do deep learning  can be a very long way from the truth!

You very often don’t need much data at all, a lot of people are looking for ways to share data and aggregate data, but that’s unnecessary.They assume they need more data than they do, cause they’re not familiar with the basics of transfer learning which is this critical technique for needing orders of magnitudes less data.

Jeremy Howards

Installation & Training Steps

Install

To install, use pip:

pip install git+https://github.com/udaylunawat/Whats-this-rock.git

Use the Telegram Bot

You can try the bot here on Telegram.

Type /help to get instructions in chat.

Deploy Telegram Bot

rocks_deploy_bot

Download and process data

%%bash
rocks_process_data remove_bad= True \
                    remove_misclassified= True \
                    remove_duplicates= True \
                    remove_corrupted= True \
                    remove_unsupported= True \
                    sampling=None \
                    train_split=0.8 \

Train Model

Run these commands

rocks_train_model wandb.project=Whats-this-rock \
                    wandb.mode=offline \
                    wandb.use=False \
                    dataset_id=[1,2] \
                    epochs=30 \
                    lr=0.005 \
                    augmentation=None \
                    monitor=val_loss \
                    loss=categorical_crossentropy \
                    backbone=resnet \
                    lr_schedule=cosine_decay_restarts \
                    lr_decay_steps=300 \
                    trainable=False \

You can try different models and parameters by editing config.json.

By using Hydra it’s now much more easier to override parameters like this

rocks_train_model wandb.project=Whats-this-rockv \
                  dataset_id=[1,2] \
                  epochs=50 \
                  backbone=resnet

result

Wandb Sweeps (Hyperparameter Tuning)

Edit configs/sweeps.yaml

wandb sweep \
--project Whats-this-rock \
--entity udaylunawat \
configs/sweep.yaml

This will return a command with $sweepid

wandb agent udaylunawat/Whats-this-rock/$sweepid

Demo

alt colabRun in Colab alt SourceView Source on GitHub alt noteboookDownload Notebook

Features

\Features added \Features planned
  • Wandb

  • Datasets

    • 4 Datasets
  • Augmentation

    • keras-cv
    • Regular Augmentation
  • Sampling

    • Oversampling
    • Undersampling
    • Class weights
  • Remove Corrupted Images

  • Try Multiple Optimizers (Adam, RMSProp, AdamW, SGD)

  • Generators

    • TFDS datasets
    • ImageDataGenerator
  • Models

    • ConvNextTiny
    • BaselineCNN
    • Efficientnet
    • Resnet101
    • MobileNetv1
    • MobileNetv2
    • Xception
  • LRScheduleer, LRDecay

    • Baseline without scheduler
    • Step decay
    • Cosine annealing
    • Classic cosine annealing with bathc steps w/o restart
  • Model Checkpoint, Resume Training

  • Evaluation

    • Confusion Matrix
    • Classification Report
  • Deploy Telegram Bot

    • Heroku - Deprecated
    • Railway
    • Show CM and CL in bot
  • Docker

  • GitHub Actions

    • Deploy Bot when bot.py is updated.
    • Lint code using GitHub super-linter
  • Configuration Management

    • ml-collections
    • Hydra
  • Performance improvement

    • Convert to tf.data.Dataset
  • Linting & Formatting

    • Black
    • Flake8
    • isort
    • pydocstyle
  • Add Badges

    • Linting
  • found the classes that the model is performing terribly on

  • nbdev

  • CI

  • documentation

  • Deploy to Huggingface spaces

  • Accessing the model through FastAPI (Backend)

  • Streamlit (Frontend)

  • convert models.py to Classes and more OOP style

  • Group Runs

    • kfold cross validation
  • WandB Tables

  • find the long tail examples or hard examples,

  • Add Badges

    • Railway
  • Technologies Used

    Google Colab python-telegram-bot Railway
    Jupyter Notebook Python GitHub Actions
    Weights & Biases TensorFlow macOS
    Docker Git Hydra
    Black

    Directory Tree

    ├── imgs                              <- Images for skill banner, project banner and other images
    │
    ├── configs                           <- Configuration files
    │   ├── configs.yaml                  <- config for single run
    │   └── sweeps.yaml                   <- confguration file for sweeps hyperparameter tuning
    │
    ├── data
    │   ├── corrupted_images              <- corrupted images will be moved to this directory
    │   ├── misclassified_images          <- misclassified images will be moved to this directory
    │   ├── bad_images                    <- Bad images will be moved to this directory
    │   ├── duplicate_images              <- Duplicate images will be moved to this directory
    │   ├── sample_images                 <- Sample images for inference
    │   ├── 0_raw                         <- The original, immutable data dump.
    │   ├── 1_external                    <- Data from third party sources.
    │   ├── 2_interim                     <- Intermediate data that has been transformed.
    │   └── 3_processed                   <- The final, canonical data sets for modeling.
    │
    ├── notebooks                         <- Jupyter notebooks. Naming convention is a number (for ordering),
    │                                        the creator's initials, and a short `-` delimited description, e.g.
    │                                        1.0-jqp-initial-data-exploration`.
    │
    │
    ├── rocks_classifier                  <- Source code for use in this project.
    │   │
    │   ├── data                          <- Scripts to download or generate data
    │   │   ├── download.py
    │   │   ├── preprocess.py
    │   │   └── utils.py
    │   │
    │   ├── callbacks                     <- functions that are executed during training at given stages of the training procedure
    │   │   └── callbacks.py
    │   │
    │   ├── models                        <- Scripts to train models and then use trained models to make
    │   │   │                                predictions
    │   │   ├── evaluate.py
    │   │   ├── models.py
    │   │   ├── predict.py
    │   │   ├── train.py
    │   │   └── utils.py
    │   │
    │   │
    │   └── visualization                 <- Scripts for visualizations
    │
    ├── .dockerignore                     <- Docker ignore
    ├── .gitignore                        <- GitHub's excellent Python .gitignore customized for this project
    ├── LICENSE                           <- Your project's license.
    ├── README.md                         <- The top-level README for developers using this project.
    ├── CHANGELOG.md                      <- Release changes.
    ├── CODE_OF_CONDUCT.md                <- Code of conduct.
    ├── CONTRIBUTING.md                   <- Contributing Guidelines.
    ├── settings.ini                      <- configuration.
    ├── README.md                         <- The top-level README for developers using this project.
    ├── requirements.txt                  <- The requirements file for reproducing the analysis environment, e.g.
    │                                        generated with `pip freeze > requirements.txt`
    └── setup.py                          <- makes project pip installable (pip install -e .) so src can be imported
    

    Bug / Feature Request

    If you find a bug (the site couldn’t handle the query and / or gave undesired results), kindly open an issue here by including your search query and the expected result.

    If you’d like to request a new function, feel free to do so by opening an issue here. Please include sample queries and their corresponding results.

    Contributing

    • Contributions make the open source community such an amazing place to learn, inspire, and create.
    • Any contributions you make are greatly appreciated.
    • Check out our contribution guidelines for more information.

    License

    LinkFree is licensed under the MIT License - see the LICENSE file for details.

    Credits

    Support

    This project needs a ⭐️ from you. Don’t forget to leave a star ⭐️


    Walt might be the one who knocks
    but Hank is the one who rocks.

    Project details


    Download files

    Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

    Source Distribution

    rocks_classifier-0.0.8.tar.gz (32.4 kB view details)

    Uploaded Source

    Built Distribution

    rocks_classifier-0.0.8-py3-none-any.whl (29.4 kB view details)

    Uploaded Python 3

    File details

    Details for the file rocks_classifier-0.0.8.tar.gz.

    File metadata

    • Download URL: rocks_classifier-0.0.8.tar.gz
    • Upload date:
    • Size: 32.4 kB
    • Tags: Source
    • Uploaded using Trusted Publishing? No
    • Uploaded via: twine/4.0.1 CPython/3.9.15

    File hashes

    Hashes for rocks_classifier-0.0.8.tar.gz
    Algorithm Hash digest
    SHA256 cfa4321c40f7fe6407850e0b018080855c277f44bef5f7a2df0eb09215c69828
    MD5 4896c8a105629c112067a09f0a367f90
    BLAKE2b-256 6e9ab6aed74c0fd4d9bdb3e270fbaec4a5f33b99455b83faf96ff80ad401985c

    See more details on using hashes here.

    File details

    Details for the file rocks_classifier-0.0.8-py3-none-any.whl.

    File metadata

    File hashes

    Hashes for rocks_classifier-0.0.8-py3-none-any.whl
    Algorithm Hash digest
    SHA256 a05b424a780144912a69b7c92c457aa08993be51301db00a3e464d2d0b0d5da5
    MD5 709f74f146a3f351dbbc33ab020b678b
    BLAKE2b-256 c4f6f21e9d20d12918ce1e9451ab3da754894354aa2522621aed8ca0e8345e67

    See more details on using hashes here.

    Supported by

    AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page