Skip to main content

Rofunc: The Full Process Python Package for Robot Learning from Demonstration and Robot Manipulation

Project description

Rofunc: The Full Process Python Package for Robot Learning from Demonstration and Robot Manipulation

Release License Documentation Status Build Status

Repository address: https://github.com/Skylark0924/Rofunc

Rofunc package focuses on the Imitation Learning (IL), Reinforcement Learning (RL) and Learning from Demonstration (LfD) for (Humanoid) Robot Manipulation. It provides valuable and convenient python functions, including demonstration collection, data pre-processing, LfD algorithms, planning, and control methods. We also provide an Isaac Gym-based robot simulator for evaluation. This package aims to advance the field by building a full-process toolkit and validation platform that simplifies and standardizes the process of demonstration data collection, processing, learning, and its deployment on robots.

Installation

Install from PyPI (stable version)

The installation is very easy,

pip install rofunc

and as you'll find later, it's easy to use as well!

import rofunc as rf

Thus, have fun in the robotics world!

Note Several requirements need to be installed before using the package. Please refer to the installation guide for more details.

Install from Source (nightly version, recommended)

git clone https://github.com/Skylark0924/Rofunc.git
cd Rofunc

# Create a conda environment
# Python 3.8 is strongly recommended
conda create -n rofunc python=3.8

# For Linux user
sh ./scripts/install.sh
# [Option] Install with baseline RL frameworks (SKRL, RLlib, Stable Baselines3)
sh ./scripts/install_w_baselines.sh
# [Option] For MacOS user (brew is required, Isaac Gym based simulator is not supported on MacOS)
sh ./scripts/mac_install.sh

Note If you want to use functions related to ZED camera, you need to install ZED SDK manually. (We have tried to package it as a .whl file to add it to requirements.txt, unfortunately, the ZED SDK is not very friendly and doesn't support direct installation.)

Documentation

Documentation Example Gallery

Note Currently, we provide a simple document; please refer to here. A comprehensive one with both English and Chinese versions is built via the readthedoc. We provide a simple but interesting example: learning to play Taichi by learning from human demonstration.

To give you a quick overview of the pipeline of rofunc, we provide an interesting example of learning to play Taichi from human demonstration. You can find it in the Quick start section of the documentation.

The available functions and plans can be found as follows.

Note โœ…: Achieved ๐Ÿ”ƒ: Reformatting โ›”: TODO

Data Learning P&C Tools Simulator
xsens.record โœ… DMP โ›” LQT โœ… Config โœ… Franka โœ…
xsens.export โœ… GMR โœ… LQTBi โœ… robolab.coord โœ… CURI โœ…
xsens.visual โœ… TPGMM โœ… LQTFb โœ… robolab.fk โœ… CURIMini ๐Ÿ”ƒ
opti.record โœ… TPGMMBi โœ… LQTCP โœ… robolab.ik โœ… CURISoftHand โœ…
opti.export โœ… TPGMM_RPCtl โœ… LQTCPDMP โœ… robolab.fd โ›” Walker โœ…
opti.visual โœ… TPGMM_RPRepr โœ… LQR โœ… robolab.id โ›” Gluon ๐Ÿ”ƒ
zed.record โœ… TPGMR โœ… PoGLQRBi โœ… visualab.dist โœ… Baxter ๐Ÿ”ƒ
zed.export โœ… TPGMRBi โœ… iLQR ๐Ÿ”ƒ visualab.ellip โœ… Sawyer ๐Ÿ”ƒ
zed.visual โœ… TPHSMM โœ… iLQRBi ๐Ÿ”ƒ visualab.traj โœ… Multi-Robot โœ…
emg.record โœ… BCO ๐Ÿ”ƒ iLQRFb ๐Ÿ”ƒ
emg.export โœ… STrans โ›” iLQRCP ๐Ÿ”ƒ
emg.visual โœ… PPO(SKRL) โœ… iLQRDyna ๐Ÿ”ƒ
mmodal.record โ›” SAC(SKRL) โœ… iLQRObs ๐Ÿ”ƒ
mmodal.export โœ… TD3(SKRL) โœ… MPC โ›”
PPO(SB3) โ›” RMP โ›”
SAC(SB3) โ›”
TD3(SB3) โ›”
PPO(RLlib) โœ…
SAC(RLlib) โœ…
TD3(RLlib) โœ…
PPO(ElegRL) โœ…
SAC(ElegRL) โœ…
TD3(ElegRL) โœ…
PPO(RofuncRL) โœ…
SAC(RofuncRL) ๐Ÿ”ƒ
TD3(RofuncRL) ๐Ÿ”ƒ
ODTrans(RofuncRL) โ›”
RT-1(RofuncRL) โ›”
CQL(RofuncRL) โ›”
TD3BC(RofuncRL) โ›”
DTrans(RofuncRL) ๐Ÿ”ƒ
EDAC(RofuncRL) โ›”

Star History

Star History Chart

Citation

If you use rofunc in a scientific publication, we would appreciate citations to the following paper:

@misc{Rofunc2022,
      author = {Liu, Junjia and Li, Chenzui and Delehelle, Donatien and Li, Zhihao and Chen, Fei},
      title = {Rofunc: The full process python package for robot learning from demonstration and robot manipulation},
      year = {2022},
      publisher = {GitHub},
      journal = {GitHub repository},
      howpublished = {\url{https://github.com/Skylark0924/Rofunc}},
}

Related Papers

  1. Robot cooking with stir-fry: Bimanual non-prehensile manipulation of semi-fluid objects (IEEE RA-L 2022 | Code)
@article{liu2022robot,
         title={Robot cooking with stir-fry: Bimanual non-prehensile manipulation of semi-fluid objects},
         author={Liu, Junjia and Chen, Yiting and Dong, Zhipeng and Wang, Shixiong and Calinon, Sylvain and Li, Miao and Chen, Fei},
         journal={IEEE Robotics and Automation Letters},
         volume={7},
         number={2},
         pages={5159--5166},
         year={2022},
         publisher={IEEE}
}
  1. SoftGPT: Learn Goal-oriented Soft Object Manipulation Skills by Generative Pre-trained Heterogeneous Graph Transformer (IROS 2023)
  2. Learning Robot Generalized Bimanual Coordination using Relative Parameterization Method on Human Demonstration (IEEE CDC 2023 | Code)

The Team

Rofunc is developed and maintained by the CLOVER Lab (Collaborative and Versatile Robots Laboratory), CUHK.

Acknowledge

We would like to acknowledge the following projects:

Learning from Demonstration

  1. pbdlib
  2. Ray RLlib
  3. ElegantRL
  4. SKRL

Planning and Control

  1. Robotics codes from scratch (RCFS)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rofunc-0.0.1.9.tar.gz (99.3 MB view details)

Uploaded Source

Built Distribution

rofunc-0.0.1.9-py3-none-any.whl (99.8 MB view details)

Uploaded Python 3

File details

Details for the file rofunc-0.0.1.9.tar.gz.

File metadata

  • Download URL: rofunc-0.0.1.9.tar.gz
  • Upload date:
  • Size: 99.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for rofunc-0.0.1.9.tar.gz
Algorithm Hash digest
SHA256 6ee994973cd25d64ce25799b2738aba65eaa849764851b3adbf2d6074da7f50d
MD5 4c7eaa0eb96d0c64e50aef86b52ab932
BLAKE2b-256 a03739280dd71425d1c310c598954746e82f91b45276df600c85c33e1796949f

See more details on using hashes here.

File details

Details for the file rofunc-0.0.1.9-py3-none-any.whl.

File metadata

  • Download URL: rofunc-0.0.1.9-py3-none-any.whl
  • Upload date:
  • Size: 99.8 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for rofunc-0.0.1.9-py3-none-any.whl
Algorithm Hash digest
SHA256 d95422c4e1e3ff49a75617fda29ae0e03cae60702193dc5cfc526f7b36b5afa7
MD5 70b710c1c60f6147570f366ca0aeaec0
BLAKE2b-256 c00c96a93c52956462e7cc84152b74e0e7f5393edde1bc29445c46086dda0afd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page