Composable and blazing fast rolling-quantile filters for streaming data and bulk batches.
Project description
Rolling Quantiles for NumPy
Hyper-efficient and composable filters.
- Simple, clean, intuitive interface.
- Supports streaming data or bulk processing.
- Python 3 bindings for a compact library written in pure C.
A Quick Tour
import numpy as np
import rolling_quantiles as rq
pipe = rq.Pipeline( # rq.Pipeline is the only stateful object
# declare a cascade of filters by a sequence of immutable description objects
rq.LowPass(window=200, portion=100, subsample_rate=2),
# the above takes a median (100 out of 200) of the most recent 200 points
# and then spits out every other one
rq.HighPass(window=10, portion=3, subsample_rate=1))
# that subsampled rolling median is then fed into this filter that takes a
# 30% quantile on a window of size 10, and subtracts it from its raw input
# the pipeline exposes a set of read-only attributes that describe it
pipe.lag # = 60.0, the effective number of time units that the real-time output
# is delayed from the input
pipe.stride # = 2, how many inputs it takes to produce an output
# (>1 due to subsampling)
input = np.random.randn(1000)
output = pipe.feed(input) # the core, singular exposed method
# every other output will be a NaN to demarcate unready values
subsampled_output = output[1::pipe.stride]
See the Github repository for more details.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distributions
File details
Details for the file rolling_quantiles-1.1.0-cp39-cp39-win_amd64.whl
.
File metadata
- Download URL: rolling_quantiles-1.1.0-cp39-cp39-win_amd64.whl
- Upload date:
- Size: 17.7 kB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d26175b1aa25aeeca552229358be29d7346954a02da7ceacd434c188c6622dcb |
|
MD5 | 2722b0410d8759aec874340cdb9644f5 |
|
BLAKE2b-256 | fd41b4087abc6b138f16a44ea84e16cd851a1bcb35c8656e11f19d213a5b2b0c |
File details
Details for the file rolling_quantiles-1.1.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl
.
File metadata
- Download URL: rolling_quantiles-1.1.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl
- Upload date:
- Size: 52.4 kB
- Tags: CPython 3.9, manylinux: glibc 2.5+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9d369bc6a65b133b22afe82125a8fabdf4d9dc5d07a39ebd16ccbb853ef5a888 |
|
MD5 | 6f3149261bcafc90a5b1752d52a038ef |
|
BLAKE2b-256 | 911b2893aa67f37551e8d6071fa6f9df0da0c4e8ed6ffe4014399e019832686c |
File details
Details for the file rolling_quantiles-1.1.0-cp39-cp39-macosx_10_15_x86_64.whl
.
File metadata
- Download URL: rolling_quantiles-1.1.0-cp39-cp39-macosx_10_15_x86_64.whl
- Upload date:
- Size: 17.2 kB
- Tags: CPython 3.9, macOS 10.15+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d5db3b233a4f78f3d2af3496f8952a23ea260f2db227511359991a8137d680df |
|
MD5 | cbaa4a51a97bcf2865dde06090b25e1c |
|
BLAKE2b-256 | ee1d4402a80d71f7a27f595af36347257b4507f1bb679677015c049cbeccbd4c |
File details
Details for the file rolling_quantiles-1.1.0-cp38-cp38-win_amd64.whl
.
File metadata
- Download URL: rolling_quantiles-1.1.0-cp38-cp38-win_amd64.whl
- Upload date:
- Size: 17.7 kB
- Tags: CPython 3.8, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c2e85476a8c65e20def7d0c0ce849046caa942e110b42b98033937ac4b0b2b25 |
|
MD5 | e72006b541aa532c25be0744e05c44c9 |
|
BLAKE2b-256 | f7d03e3148768e578b3da345900c4ec1eb259c97bcc87086ab1710fe3b08d264 |
File details
Details for the file rolling_quantiles-1.1.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
.
File metadata
- Download URL: rolling_quantiles-1.1.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
- Upload date:
- Size: 52.3 kB
- Tags: CPython 3.8, manylinux: glibc 2.5+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cc6e702be058660644d41f6dc74a3973389fab85571eda3f143a667f1d243385 |
|
MD5 | b4193eb0e2dbc773b95967738a453fa0 |
|
BLAKE2b-256 | b125179c427734a2fded73aca55eaf6bbc4b7e0786ca59c8d6a7d34d54ae11ae |
File details
Details for the file rolling_quantiles-1.1.0-cp38-cp38-macosx_10_15_x86_64.whl
.
File metadata
- Download URL: rolling_quantiles-1.1.0-cp38-cp38-macosx_10_15_x86_64.whl
- Upload date:
- Size: 17.2 kB
- Tags: CPython 3.8, macOS 10.15+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | dbd1cb4d16ec2dae7bf2856c8b598d890e649ea00013602d9bc3a38cd1b63328 |
|
MD5 | 859e89478b38e4ce7ce0420f8cd10d05 |
|
BLAKE2b-256 | 3449bde675f398833ba5655ccbdca9a5e338067cf3e53dd3a48809d70148df00 |