Causal discovery with ML
Project description
rosnet
๐ฐ๐ท โrosnetโ ์ ML์ ์ ์ฉํ causal discovery ํจํค์ง์ ๋๋ค. ์ ๊ฐ์ธ ์ฐ๊ตฌ๋ฅผ ์ํด ๋ง๋ค์์ง๋ง, ๋ค๋ฅธ ์ฌ๋๋ค๋ ์ต๋ํ ์ฌ์ฉํ๊ธฐ ์ฝ๋๋ก ์ค๊ณํ์ต๋๋ค. ๋ชจ๋ ์ฝ๋๋ ํผ์์ ์์ฑํ์ต๋๋ค. ๋ค๋ง, ์ด์ฉ์์ ํธ์๋ฅผ ์ํด ๋ค๋ฅธ ํจํค์ง์ API ์ค๊ณ๋ฅผ ๋ฐ๋ผํ๊ธด ํ์ต๋๋ค.
๐ โrosnetโ is causal discovery package applied ML . I made it for my personal study. But, it is designed to be used as easy for others as possible. I created all the codes by myself. However, for the user's convenience, I followed the API design of other packages.
๋ชฉ์ / Purpose
๐ฐ๐ท ์ด ํจํค์ง์ ๋ชฉ์ ์ ๋ค์๊ณผ ๊ฐ์ต๋๋ค :
- ML ์๊ณ ๋ฆฌ์ฆ์ Causal discovery์ ์ ์ฉ
- ํ ์ ๊ธฐ๋ฐ์ผ๋ก ๊ธฐ์กด ML ์๊ณ ๋ฆฌ์ฆ ์ฌ์ค๊ณ
๐ The purpose of this package is as follows :
- Applying ML algorithm to Causal discovery
- Re-engineering existing ML algorithm based on tensor
์ค์น / Installment
!pip install rosnet
๐ ์๊ตฌ ํจํค์ง / Required package
- numpy
์ฌ์ฉ๋ฒ / Manual
๐ฐ๐ท ์ด ํจํค์ง์ API๋ scikit-learn, keras ์ ๊ฑฐ์ ๋น์ทํฉ๋๋ค!
- ์ค์ง
fit
๊ณผpredict
, ๋ ๊ฐ์ ํจ์๋ง ์ฌ์ฉํ์๋ฉด ๋ฉ๋๋ค.
๐ API of this package is just like scikit-learn and keras!
- You only need to use two functions:
fit
andpredict
.
์์ / Example
# Multilayer Perceptron
# **Notice** : I made some ML algorithm as needed, but not all of them.
# If you just want to use ML algorithm itself,
# it is recommened to use other ML packages like scikit-learn, tensorflow ...
from rosnet.neural_network import layers
import rosnet.neural_network as network
X_train = # Your code, numpy.narray expected
y_train = # Your code, numpy.narray expected
def build_model():
model = network.Sequential([
layers.Dense(64, activation='relu', input_shape=(X_train.shape[1], )),
layers.Dense(64, activation='relu'),
layers.Dense(64, activation='relu'),
layers.Dense(64, activation='relu'),
layers.Dense(4)
])
optimizer = network.optimizers.SGD(0.001)
model.compile(loss='mse',
optimizer=optimizer,
metrics=['mae', 'mse'])
return model
model = build_model()
model.fit(X_train, y_train,
epochs=100,
batch_size = 1000,
validation_split = 0.2,
verbose = 0)
๊ฐ๋ฐ ๊ธฐ๋ก / Development log
0.0.1 - 22.03.26
- rosnet.neural_network
- rosnet.neural_network.Sequential add
- rosnet.neural_network.layers add
- rosnet.neural_network.optimizers add
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file rosnet-0.3.2.tar.gz
.
File metadata
- Download URL: rosnet-0.3.2.tar.gz
- Upload date:
- Size: 12.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7fa81674e1d7a0a046d1c347075e8b47ca3964b609c385efbd8ac19ee0f55d11 |
|
MD5 | 20b5edd246a87084bae05d355eb9c0a6 |
|
BLAKE2b-256 | f9c8934b567c2135a503a8c871b374c5751506337244f05b6a20f336aa7411e6 |
File details
Details for the file rosnet-0.3.2-py3-none-any.whl
.
File metadata
- Download URL: rosnet-0.3.2-py3-none-any.whl
- Upload date:
- Size: 19.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6a6364559e42d8f6a979eee2724f7a084a568dabdf65d1de0509f501f8f43efb |
|
MD5 | c4169bf652de55946ae6d2ffcbff8e06 |
|
BLAKE2b-256 | cb4ce4ac2855fa50a785e67c4bf36dd61298846dbe81100c99863f58173a3344 |