Skip to main content

Prediction and re-engineering of the cofactor specificity of Rossmann-fold proteins

Project description

logo

python-ver codecov

Prediction and re-engineering of the cofactor specificity of Rossmann-fold proteins

Installation

pip install rossmann-toolbox

Alternatively, to get the most recent changes, install directly from the repository:

pip install git+https://github.com/labstructbioinf/rossmann-toolbox.git

For some of the features additional dependencies are required:

Package Sequence variant Structure variant
FoldX4 - required
DSSP3 - required
HH-suite3 optional optional

Getting started

Sequence-based approach

The input is a full-length sequence. The algorithm first detects Rossmann cores (i.e. the β-α-β motifs that interact with the cofactor) in the sequence and later evaluates their cofactor specificity:

from rossmann_toolbox import RossmannToolbox
rtb = RossmannToolbox(use_gpu=True)

data = {'3m6i_A': 'MASSASKTNIGVFTNPQHDLWISEASPSLESVQKGEELKEGEVTVAVRSTGICGSDVHFWKHGCIGPMIVECDHVLGHESAGEVIAVHPSVKSIKVGDRVAIEPQVICNACEPCLTGRYNGCERVDFLSTPPVPGLLRRYVNHPAVWCHKIGNMSYENGAMLEPLSVALAGLQRAGVRLGDPVLICGAGPIGLITMLCAKAAGACPLVITDIDEGRLKFAKEICPEVVTHKVERLSAEESAKKIVESFGGIEPAVALECTGVESSIAAAIWAVKFGGKVFVIGVGKNEIQIPFMRASVREVDLQFQYRYCNTWPRAIRLVENGLVDLTRLVTHRFPLEDALKAFETASDPKTGAIKVQIQSLE'}

preds = rtb.predict(data, mode='seq')
preds = {'3m6i_A': {'FAD': 0.0008955444,
                    'NAD': 0.998446,
                    'NADP': 0.00015508455,
                    'SAM': 0.0002544397, ...}}

Structure-based approach

The input is a protein structure. Preparation steps are the same as above, but additionally, structural features are calculated via FOLDX software, and secondary structure features via DSSP

# required binaries
PATH_FOLDX = ...
PATH_HHPRED = ...
PATH_DSSP = ...

path_to_structures = ...  # path to pdb files
chains_to_use = ... # chains to load from `path_to_structures`
rtb = RossmannToolbox(use_gpu=False, foldx_loc = PATH_FOLDX, 
                                     hhsearch_loc = PATH_HHPRED,
                                     dssp_loc = PATH_DSSP)

preds = rtb.predict_structure(path_to_structures, chains_to_use, mode='seq', core_detect_mode='dl')
preds = [{'NAD': 0.99977881,
  'NADP': 0.0018195,
  'SAM': 0.00341983,
  'FAD': 3.62e-05,
  'seq': 'AGVRLGDPVLICGAGPIGLITMLCAKAAGACPLVITDIDEGRL',
  'NAD_std': 0.0003879,
  'NADP_std': 0.00213571,
  'SAM_std': 0.00411747,
  'FAD_std': 3.95e-05}]

What next?

To learn about other features of the rossmann-toolbox, such as visualization of the results, please refer to the notebook examples/example_minimal.ipynb.

Contact

If you have any questions, problems or suggestions, please contact us. The rossmann-toolbox was developed by Kamil Kaminski, Jan Ludwiczak, Maciej Jasinski, Adriana Bukala, Rafal Madaj, Krzysztof Szczepaniak, and Stanislaw Dunin-Horkawicz.

This work was supported by the First TEAM program of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rossmann-toolbox-0.1.0.tar.gz (11.1 MB view details)

Uploaded Source

Built Distribution

rossmann_toolbox-0.1.0-py3-none-any.whl (11.1 MB view details)

Uploaded Python 3

File details

Details for the file rossmann-toolbox-0.1.0.tar.gz.

File metadata

  • Download URL: rossmann-toolbox-0.1.0.tar.gz
  • Upload date:
  • Size: 11.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.6 CPython/3.6.9 Linux/4.15.0-121-generic

File hashes

Hashes for rossmann-toolbox-0.1.0.tar.gz
Algorithm Hash digest
SHA256 e473e39ef8dfda8e4d818b34cbdf15392433411786bbd03e0f0c7873b0a3e381
MD5 3806585578df31d1323595f2b0ddc2d2
BLAKE2b-256 dc030f1456add821b3381a3996187a25e53b6cf84db8eab7cfb97227fd6675af

See more details on using hashes here.

File details

Details for the file rossmann_toolbox-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: rossmann_toolbox-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 11.1 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.6 CPython/3.6.9 Linux/4.15.0-121-generic

File hashes

Hashes for rossmann_toolbox-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 a9d0cb5e75ea2a965416ae0c0ac2f0e447be7c511d330cf12bd1911d79253211
MD5 27cb922e5b915bf9133887159c5c4335
BLAKE2b-256 74fe96d51726b6a553cb23cdd05b83093a917514cae7398054204a45e4654456

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page