Skip to main content

Full Python ROUGE Score Implementation (not a wrapper)

Project description

Rouge

A full Python librarie for the ROUGE metric (paper).

Disclaimer

This implementation is independant from the "official" ROUGE script (aka. ROUGE-155).
Results may be slighlty different, see discussions in #2.

Quickstart

Clone & Install

git clone https://github.com/pltrdy/rouge
cd rouge
python setup.py install
# or
pip install -U .

or from pip:

pip install rouge

Use it from the shell (JSON Output)

$rouge -h
usage: rouge [-h] [-f] [-a] hypothesis reference

Rouge Metric Calculator

positional arguments:
  hypothesis  Text of file path
  reference   Text or file path

optional arguments:
  -h, --help  show this help message and exit
  -f, --file  File mode
  -a, --avg   Average mode

e.g.

# Single Sentence
rouge "transcript is a written version of each day 's cnn student" \
      "this page includes the show transcript use the transcript to help students with"

# Scoring using two files (line by line)
rouge -f ./tests/hyp.txt ./ref.txt

# Avg scoring - 2 files
rouge -f ./tests/hyp.txt ./ref.txt --avg

As a library

Score 1 sentence
from rouge import Rouge 

hypothesis = "the #### transcript is a written version of each day 's cnn student news program use this transcript to he    lp students with reading comprehension and vocabulary use the weekly newsquiz to test your knowledge of storie s you     saw on cnn student news"

reference = "this page includes the show transcript use the transcript to help students with reading comprehension and     vocabulary at the bottom of the page , comment for a chance to be mentioned on cnn student news . you must be a teac    her or a student age # # or older to request a mention on the cnn student news roll call . the weekly newsquiz tests     students ' knowledge of even ts in the news"

rouge = Rouge()
scores = rouge.get_scores(hypothesis, reference)

Output:

[
  {
    "rouge-1": {
      "f": 0.4786324739396596,
      "p": 0.6363636363636364,
      "r": 0.3835616438356164
    },
    "rouge-2": {
      "f": 0.2608695605353498,
      "p": 0.3488372093023256,
      "r": 0.20833333333333334
    },
    "rouge-l": {
      "f": 0.44705881864636676,
      "p": 0.5277777777777778,
      "r": 0.3877551020408163
    }
  }
]

Note: "f" stands for f1_score, "p" stands for precision, "r" stands for recall.

Score multiple sentences
import json
from rouge import Rouge

# Load some sentences
with open('./tests/data.json') as f:
  data = json.load(f)

hyps, refs = map(list, zip(*[[d['hyp'], d['ref']] for d in data]))
rouge = Rouge()
scores = rouge.get_scores(hyps, refs)
# or
scores = rouge.get_scores(hyps, refs, avg=True)

Output (avg=False): a list of n dicts:

{"rouge-1": {"f": _, "p": _, "r": _}, "rouge-2" : { .. }, "rouge-l": { ... }}

Output (avg=True): a single dict with average values:

{"rouge-1": {"f": _, "p": _, "r": _}, "rouge-2" : { ..     }, "rouge-l": { ... }}
Score two files (line by line)

Given two files hyp_path, ref_path, with the same number (n) of lines, calculate score for each of this lines, or, the average over the whole file.

from rouge import FilesRouge

files_rouge = FilesRouge()
scores = files_rouge.get_scores(hyp_path, ref_path)
# or
scores = files_rouge.get_scores(hyp_path, ref_path, avg=True)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rouge-1.0.1.tar.gz (14.3 kB view details)

Uploaded Source

Built Distribution

rouge-1.0.1-py3-none-any.whl (13.7 kB view details)

Uploaded Python 3

File details

Details for the file rouge-1.0.1.tar.gz.

File metadata

  • Download URL: rouge-1.0.1.tar.gz
  • Upload date:
  • Size: 14.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.23.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for rouge-1.0.1.tar.gz
Algorithm Hash digest
SHA256 12b48346ca47d6bcf3c45061f315452b9ccec0620ee895ec85b7efc3d54aae34
MD5 0834ad067dddfd155da7de7e37c8fcab
BLAKE2b-256 dbe43420a1ab1e82a280fb6107f7ae99e88eb12383c978fe573c0c64d0327d6b

See more details on using hashes here.

File details

Details for the file rouge-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: rouge-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 13.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.23.0 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for rouge-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 28d118536e8c774dc47d1d15ec266479b4dd0914c4672ce117d4002789bdc644
MD5 f622a6b859eca46c4976a0abfc90e5d7
BLAKE2b-256 327c650ae86f92460e9e8ef969cc5008b24798dcf56a9a8947d04c78f550b3f5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page