Skip to main content

Full Python ROUGE Score Implementation (not a wrapper)

Project description

# Rouge
*A full Python librarie for the ROUGE metric [(paper)](*

### Disclaimer
This implementation is independant from the "official" ROUGE script (aka. `ROUGE-155`).
Results may be *slighlty* different, see [discussions in #2](

## Quickstart
#### Clone & Install
git clone
cd rouge
python install
# or
pip install -U .
or from pip:
pip install rouge
#### Use it from the shell (JSON Output)
$rouge -h
usage: rouge [-h] [-f] [-a] hypothesis reference

Rouge Metric Calculator

positional arguments:
hypothesis Text of file path
reference Text or file path

optional arguments:
-h, --help show this help message and exit
-f, --file File mode
-a, --avg Average mode



# Single Sentence
rouge "transcript is a written version of each day 's cnn student" \
"this page includes the show transcript use the transcript to help students with"

# Scoring using two files (line by line)
rouge -f ./tests/hyp.txt ./ref.txt

# Avg scoring - 2 files
rouge -f ./tests/hyp.txt ./ref.txt --avg

#### As a library

###### Score 1 sentence

from rouge import Rouge

hypothesis = "the #### transcript is a written version of each day 's cnn student news program use this transcript to he lp students with reading comprehension and vocabulary use the weekly newsquiz to test your knowledge of storie s you saw on cnn student news"

reference = "this page includes the show transcript use the transcript to help students with reading comprehension and vocabulary at the bottom of the page , comment for a chance to be mentioned on cnn student news . you must be a teac her or a student age # # or older to request a mention on the cnn student news roll call . the weekly newsquiz tests students ' knowledge of even ts in the news"

rouge = Rouge()
scores = rouge.get_scores(hypothesis, reference)


[{"rouge-1": {"f": 0.49411764217577864,
"p": 0.5833333333333334,
"r": 0.42857142857142855},
"rouge-2": {"f": 0.23423422957552154,
"p": 0.3170731707317073,
"r": 0.18571428571428572},
"rouge-l": {"f": 0.42751590030718895,
"p": 0.5277777777777778,
"r": 0.3877551020408163}}]

###### Score multiple sentences
import json
from rouge import Rouge

# Load some sentences
with open('./tests/data.json') as f:
data = json.load(f)

hyps, refs = map(list, zip(*[[d['hyp'], d['ref']] for d in data]))
rouge = Rouge()
scores = rouge.get_scores(hyps, refs)
# or
scores = rouge.get_scores(hyps, refs, avg=True)

*Output (`avg=False`)*: a list of `n` dicts:

{"rouge-1": {"f": _, "p": _, "r": _}, "rouge-2" : { .. }, "rouge-3": { ... }}

*Output (`avg=True`)*: a single dict with average values:

{"rouge-1": {"f": _, "p": _, "r": _}, "rouge-2" : { ..     }, "rouge-3": { ... }}

###### Score two files (line by line)
Given two files `hyp_path`, `ref_path`, with the same number (`n`) of lines, calculate score for each of this lines, or, the average over the whole file.

from rouge import FilesRouge

files_rouge = FilesRouge(hyp_path, ref_path)
scores = files_rouge.get_scores()
# or
scores = files_rouge.get_scores(avg=True)

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rouge-0.3.2.tar.gz (11.8 kB view hashes)

Uploaded Source

Built Distribution

rouge-0.3.2-py3-none-any.whl (12.9 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page