Skip to main content
Help us improve PyPI by participating in user testing. All experience levels needed!

Cycling performance modelling with Python

Project description

# rouleur: Cycling performance modelling

Makes the physical modelling of cycling trivially easy.

For example, let’s try and estimate the power required for Wiggo’s current hour record:

`pycon >>> from rouleur import CyclingParams, calculate_air_density >>> >>> record = 54.526          # km/h >>> record *= 1000 / 60**2   # m/s >>> rho = calculate_air_density(30, 777, 0.6)  # about right >>> pars = CyclingParams( >>>     rider_velocity=record, >>>     air_density=rho, >>>     CdA=0.19, Crr=0.0025, >>>     chain_efficiency_factor=0.98, >>>     road_gradient=0, >>>     mass_total=82) >>> >>> pars.solve_for.power_output() 440.9565671224358 `

That’s all there is to it.

The API consists almost exclusively of the CyclingParams class, which holds all the parameters required for modelling a cyclist. The class constructor combines a number of sensible defaults with any (keyword) arguments passed. Details of recognised keyword arguments—i.e. model parameters—can be found in the class docstring (help(CyclingParams)).

Instances then have a number of solver methods accessible via parameters.solve_for.*.

# References

This package is an implementation of a number of published algorithms. Important references are:

  1. [Martin JC, Milliken DL, Cobb JE, McFadden KL, Coggan AR. Validation of a Mathematical Model for Road Cycling Power. Journal of Applied Biomechanics 14: 276–291, 1998.](http://journals.humankinetics.com/doi/10.1123/jab.14.3.276)
  2. [Martin JC, Gardner AS, Barras M, Martin DT. Modeling sprint cycling using field-derived parameters and forward integration. Med Sci Sports Exerc 38: 592–597, 2006.](https://www.ncbi.nlm.nih.gov/pubmed/16540850)
  3. [Atkinson G, Peacock O, Passfield L. Variable versus constant power strategies during cycling time-trials: Prediction of time savings using an up-to-date mathematical model. Journal of Sports Sciences 25: 1001–1009, 2007.](https://www.ncbi.nlm.nih.gov/pubmed/17497402)
  4. [Wells MS, Marwood S. Effects of power variation on cycle performance during simulated hilly time-trials. European Journal of Sport Science 16: 912–918, 2016.](https://www.ncbi.nlm.nih.gov/pubmed/26949050)

Project details


Release history Release notifications

This version
History Node

0.0.3

History Node

0.0.2

History Node

0.0.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
rouleur-0.0.3.tar.gz (14.6 kB) Copy SHA256 hash SHA256 Source None Feb 21, 2017

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging CloudAMQP CloudAMQP RabbitMQ AWS AWS Cloud computing Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page