Skip to main content

Perform quaternion operations using NumPy arrays

Project description

README

ReadTheDocs Status CircleCI Codecov PyPI Codacy Badge PyPI - Python Version Zenodo JOSS

Welcome to rowan, a python package for quaternions. The package is built entirely on top of NumPy and represents quaternions using NumPy arrays, meaning that all functions support arbitrarily high-dimensional arrays of quaternions. Quaternions are encoded as arrays of shape (...,4), with the convention that the final dimension of an array (a, b, c, d) represents the quaternion a + bi + cj + dk. The package covers all basic quaternion algebraic and calculus operations, and also provides features for measuring distances, performing point cloud mapping, and interpolating. If you have any questions about how to work with rowan, please visit the ReadTheDocs page.

Authors

Setup

The recommended methods for installing rowan are using pip or conda.

Installation via pip

To install the package from PyPI, execute:

pip install rowan --user

Installation via conda

To install the package from conda, first add the conda-forge channel:

conda config --add channels conda-forge

After the conda-forge channel has been added, you can install rowan by executing

conda install rowan

Installation from source

To install from source, execute:

git clone https://bitbucket.org/glotzer/rowan.git
cd rowan
python setup.py install --user

Requirements

  • Python = 2.7, >= 3.3
  • NumPy >= 1.10

Testing

The package is currently tested for Python versions 2.7 and Python >= 3.3 on Unix-like systems. Continuous integrated testing is performed using CircleCI on these Python versions with NumPy versions 1.10 and above.

To run the packaged unit tests, execute the following line from the root of the repository:

python -m unittest discover tests

To check test coverage, make sure the coverage module is installed:

pip install coverage

and then run the packaged unit tests with the coverage module:

coverage run -m unittest discover tests

Quickstart

This library can be used to work with quaternions by simply instantiating the appropriate NumPy arrays and passing them to the required functions. For example:

import rowan
import numpy as np
one = np.array([10, 0, 0, 0])
one_unit = rowan.normalize(one)
assert(np.all(one_unit == np.array([1, 0, 0, 0])))
if not np.all(one_unit == rowan.multiply(one_unit, one_unit)):
    raise RuntimeError("Multiplication failed!")

one_vec = np.array([1, 0, 0])
rotated_vector = rowan.rotate(one_unit, one_vec)

mat = np.eye(3)
quat_rotate = rowan.from_matrix(mat)
alpha, beta, gamma = rowan.to_euler(quat_rotate)
quat_rotate_returned = rowan.from_euler(alpha, beta, gamma)
identity = rowan.to_matrix(quat_rotate_returned)

Documentation

Documentation for rowan is written in reStructuredText and compiled using Sphinx. To build the documentation, first install Sphinx:

pip install sphinx sphinx_rtd_theme

You can then use Sphinx to create the actual documentation in either PDF or HTML form by running the following commands in the rowan root directory:

cd doc
make html # For html output
make latexpdf # For a LaTeX compiled PDF file
open build/html/index.html

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rowan-1.1.7.tar.gz (25.2 kB view details)

Uploaded Source

Built Distribution

rowan-1.1.7-py2.py3-none-any.whl (24.5 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file rowan-1.1.7.tar.gz.

File metadata

  • Download URL: rowan-1.1.7.tar.gz
  • Upload date:
  • Size: 25.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.6.6

File hashes

Hashes for rowan-1.1.7.tar.gz
Algorithm Hash digest
SHA256 7d3821011ddf795e1bd764954de7355a458b42c6eca57bb97fa3a10f0fd2d328
MD5 3ecce4353cd57ef0e8c578a69769822e
BLAKE2b-256 22073e3d5367a85e0932995e0983a6d1f2848a22cafdf7e0728b738c3dfef411

See more details on using hashes here.

File details

Details for the file rowan-1.1.7-py2.py3-none-any.whl.

File metadata

  • Download URL: rowan-1.1.7-py2.py3-none-any.whl
  • Upload date:
  • Size: 24.5 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.6.6

File hashes

Hashes for rowan-1.1.7-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 713b2ed5bfd118ea95d6883d969fea629e32153da866b474eb0059c11d3a254e
MD5 6c5daf6fc529ec41f8f308501ba4d3a7
BLAKE2b-256 9ee35d7768a5ffd47db752a0e64e0a8f40c3cf9870d0d0e8096193c9ba777e99

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page