Skip to main content

Package providing utilities to load, manipulate, convert and visualize COCO format datasets.

Project description

rpycocotools

PyPI PyPI - Python Version PyPI - Downloads PyPI - License CI Python CI Rust

The rpycocotools package provides tools to load, manipulate, convert and visualize COCO format datasets. The documentation is available here.

Installation

The package is available on PyPI here, and can installed with pip:

pip install rpycocotools

You can also git clone this repo and build it yourself with:

pip install -r requirements/requirements-build.txt
pip install .

Usage example

Visualize image with a given id:

import rpycocotools
coco_dataset = rpycocotools.COCO("../data_samples/coco_25k/annotations.json", "../data_samples/coco_25k/images")
coco_dataset.visualize_img(174482)

rpycocotools_visu_example

import rpycocotools
coco_dataset = rpycocotools.COCO("../data_samples/coco_25k/annotations.json", "../data_samples/coco_25k/images")
anns = coco_dataset.get_img_anns(174482)
mask = rpycocotools.mask.decode(anns[0].segmentation)

The mask is a numpy array and can be visualized (for example with opencv):

bike_segmentation

Benchmarks

Details

There are a few benchmarking scripts to compare to pycocotools.
The results reported here are done on my own PC and presented only to get a general idea. I might run the benchmark on a more reproducible environment in the future.

Setup

Some of the benchmarks use the instances_train2017.json files from the 2017 COCO dataset.
Either place this file in the data_samples folder or only run the commands below with the -m "not coco2017" option.

pip install -r requirements/requirements-benchmarks.txt
pip install .

Load

Benchmark how much time it takes load a COCO dataset.

python -m pytest benchmarks/load.py -vv

Results:

Test Name Mean time in s
rpycocotools on COCO instances_train2017.json 4.4
pycocotools on COCO instances_train2017.json 16.5

Area

Benchmark how much time it takes to compute the total number of mask pixels in a COCO dataset.

python -m pytest benchmarks/area.py -vv -m coco2017

Results:

Test Name Mean time in ms
rpycocotools on COCO instances_train2017.json 880.6
pycocotools on COCO instances_train2017.json 19,302.9

Decode masks

Benchmark how much time it takes to decode all the masks in a COCO dataset.

python -m pytest benchmarks/decode.py -vv -m coco2017

Results:

Test Name Mean time in s
rpycocotools on COCO instances_train2017.json 371
pycocotools on COCO instances_train2017.json 141

Results after converting all the segmentations to RLE before decoding (conversion time not included):

Test Name Mean time in s
rpycocotools on COCO instances_train2017.json 300
pycocotools on COCO instances_train2017.json 120

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rpycocotools-0.0.7.tar.gz (139.9 kB view details)

Uploaded Source

Built Distributions

rpycocotools-0.0.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rpycocotools-0.0.7-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

rpycocotools-0.0.7-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

rpycocotools-0.0.7-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rpycocotools-0.0.7-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

rpycocotools-0.0.7-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

rpycocotools-0.0.7-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

rpycocotools-0.0.7-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

rpycocotools-0.0.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

rpycocotools-0.0.7-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

rpycocotools-0.0.7-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

rpycocotools-0.0.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

rpycocotools-0.0.7-cp311-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

rpycocotools-0.0.7-cp311-none-win32.whl (1.0 MB view details)

Uploaded CPython 3.11 Windows x86

rpycocotools-0.0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

rpycocotools-0.0.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

rpycocotools-0.0.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

rpycocotools-0.0.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

rpycocotools-0.0.7-cp311-cp311-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

rpycocotools-0.0.7-cp311-cp311-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

rpycocotools-0.0.7-cp310-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

rpycocotools-0.0.7-cp310-none-win32.whl (1.0 MB view details)

Uploaded CPython 3.10 Windows x86

rpycocotools-0.0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

rpycocotools-0.0.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

rpycocotools-0.0.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

rpycocotools-0.0.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

rpycocotools-0.0.7-cp310-cp310-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

rpycocotools-0.0.7-cp310-cp310-macosx_10_7_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

rpycocotools-0.0.7-cp39-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

rpycocotools-0.0.7-cp39-none-win32.whl (1.0 MB view details)

Uploaded CPython 3.9 Windows x86

rpycocotools-0.0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

rpycocotools-0.0.7-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

rpycocotools-0.0.7-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

rpycocotools-0.0.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

rpycocotools-0.0.7-cp38-none-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

rpycocotools-0.0.7-cp38-none-win32.whl (1.0 MB view details)

Uploaded CPython 3.8 Windows x86

rpycocotools-0.0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

rpycocotools-0.0.7-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (2.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

rpycocotools-0.0.7-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (3.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

rpycocotools-0.0.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (2.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

File details

Details for the file rpycocotools-0.0.7.tar.gz.

File metadata

  • Download URL: rpycocotools-0.0.7.tar.gz
  • Upload date:
  • Size: 139.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.0.0

File hashes

Hashes for rpycocotools-0.0.7.tar.gz
Algorithm Hash digest
SHA256 25060479f391636c5cf2b3fd2ece1e4eda4c0dfeec62814dee09b55581c97c30
MD5 a2a5f5a7f00b179985950acacc204a50
BLAKE2b-256 3e958beb56caa2a211c04a17ff8b4c80bb63431007bf283f19fe6259ff19a561

See more details on using hashes here.

File details

Details for the file rpycocotools-0.0.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rpycocotools-0.0.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 024460cfdaf4d6f747c87a0b537ec7bd5b1f0b4af72299c9fc2c9df38050437a
MD5 7a4f410242bb787bc77af34c6fc0f955
BLAKE2b-256 eee70ee95afe7cd2a3305bc04d260f7ea9e2a5730c32d83903e1788465fdf4fd

See more details on using hashes here.

File details

Details for the file rpycocotools-0.0.7-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rpycocotools-0.0.7-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 1d996bd9dde23fb52ad3ebe0ec072b489600903d5f68cced02a89bcee49b8595
MD5 199e3cc1354f48c1d40cd2a6a3fd96c4
BLAKE2b-256 ced8230823a9081f53973ec42badb3b13fa43589420386700ed21edb3541cd0e

See more details on using hashes here.

File details

Details for the file rpycocotools-0.0.7-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rpycocotools-0.0.7-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 e00a335adfc3fa51fe3435cc3885ee26f23fb8d6298e60bd5058d5570f3d5a41
MD5 f0229b92598b24ff81fe304a6f0cc5c1
BLAKE2b-256 0209302acb1d7f65acfe8dbd52368302a5184098a2c38f2d7772c34b35732ac8

See more details on using hashes here.

File details

Details for the file rpycocotools-0.0.7-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rpycocotools-0.0.7-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f227447a792d206ff6bd1e7500b472c9b41f32152fd0d3b52d38282c64939fa0
MD5 0571e3d203c586a53782623952489380
BLAKE2b-256 2133b23aa89df771f151e0b082395f79e0463fe223d75f157680d9d9ea7a8dac

See more details on using hashes here.

File details

Details for the file rpycocotools-0.0.7-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rpycocotools-0.0.7-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 694d084b12179d764965694e3ee76e67dccaf56725f01d47896516fec3bb5ec3
MD5 4fa3636933bb07d6b87c3fab4e480290
BLAKE2b-256 7bfc270a94a8efcd9bcda45d2f6619e30a7d733c30a9d3980cc917cebf85a082

See more details on using hashes here.

File details

Details for the file rpycocotools-0.0.7-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rpycocotools-0.0.7-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 9b321a6cec6ac5b651a442ed5510abc5ce4e21b47ab5d28f5c2b62869992d849
MD5 f746241f71dd0ba3201718af9e843ec6
BLAKE2b-256 b7a0df16772ed5cde403b2443b6b0735d920021c34d5fd2cde6509eb94761af0

See more details on using hashes here.

File details

Details for the file rpycocotools-0.0.7-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rpycocotools-0.0.7-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 3cd8379a1612b3608aeb3ef0b4c03d7c78366ea61292e794273d719d8ad413f4
MD5 6bbf1be20c8571d77cd6cb46bd40326a
BLAKE2b-256 a907453d9d5c3e3a6c2495152b495f5dead4ca7d9cd0b6541376d6bc2ae9678d

See more details on using hashes here.

File details

Details for the file rpycocotools-0.0.7-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rpycocotools-0.0.7-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c9b7ee7b2aa45c957c7576a6900f8945858a49162421a04bf9aa7199c112f603
MD5 2bf760e9846bc964bb284f11ed2b1ae8
BLAKE2b-256 2c43888ffade71183090d9e26484be04480c29b8a1218b997257d73af7b3f0f5

See more details on using hashes here.

File details

Details for the file rpycocotools-0.0.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rpycocotools-0.0.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4fe4722484f917b2b982588b67050f8812afed7d0e5bfce0f79892b2c403204e
MD5 ae7230b6c9c14db184a52e78e1af7675
BLAKE2b-256 88e6f127a6fa3c25504a1241c5abd669bd8f552e3868340c922392bd750dcba5

See more details on using hashes here.

File details

Details for the file rpycocotools-0.0.7-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rpycocotools-0.0.7-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 99e36b9bbf8a3bd21cdbe26882d17124c52a2ff7f480c14556ac1eebe4e9b749
MD5 1d80242dcb9db4122a962889230d245e
BLAKE2b-256 59953fb12768518cc8623050d518399eb198e486992568413df43ffd1e042974

See more details on using hashes here.

File details

Details for the file rpycocotools-0.0.7-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rpycocotools-0.0.7-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 17f5c3091dbeb5fb830ca9ef033f95d4ab80d79bbe3a64be9b7b8b1165493150
MD5 c269954140a2facbcedf2f4797fd72bf
BLAKE2b-256 2a772f1ab5a8b8f71ce8ed96bbf1a58aafa6f02b1dcbd8fb445779a5a2bb5da7

See more details on using hashes here.

File details

Details for the file rpycocotools-0.0.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rpycocotools-0.0.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b53f43601b5c7853e32fb45dc6fef2e88f02e9b4baf5054981801a798d840ae8
MD5 4e0bef6a1f3585556ee916135fa3546b
BLAKE2b-256 468f737ee0aed192040ba8b49470d210a6115092e0f6bd7abd281fe49de094d8

See more details on using hashes here.

File details

Details for the file rpycocotools-0.0.7-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for rpycocotools-0.0.7-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 ad16ced412088400c59066ac70f354324dcca00505f00c300802f4210940d22b
MD5 56e866843a9352c7438fff80d48af360
BLAKE2b-256 cb56b79cdfdfe835cabb158f7f7ccc0119e946106eb7f6fa5f9a1741af395f77

See more details on using hashes here.

File details

Details for the file rpycocotools-0.0.7-cp311-none-win32.whl.

File metadata

File hashes

Hashes for rpycocotools-0.0.7-cp311-none-win32.whl
Algorithm Hash digest
SHA256 ea2ca3f6142f26a2e70c426accb791d76ac9ead62463829ad302f147cf3ef862
MD5 f6a6f1571e11330f1bc1b58bf5f43b0b
BLAKE2b-256 653faa0b698c32bdd876205f7f7315cf95cbf4da120cdc6ddbfceac1d5cd8533

See more details on using hashes here.

File details

Details for the file rpycocotools-0.0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rpycocotools-0.0.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c3fc30d806444a849033c535161e36eadf7e3ba3d9d4f0b31b578632b78875bb
MD5 9a81bb634a4d6a21cbae89702cc3d3e0
BLAKE2b-256 992e849cfbab050d93688aadadf0e78bcb043a10bc65f0cc0e00325702ef6d8c

See more details on using hashes here.

File details

Details for the file rpycocotools-0.0.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rpycocotools-0.0.7-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 01368b813633a3b3017c0321fbad96ab53a6ac94459897bfc15be792cc10f19f
MD5 7c98a34dd46f0838257c367d5035f90e
BLAKE2b-256 a889e189a8eed467206c5a617b97f4bee5125338ac2f4644c74b5ed089b1b727

See more details on using hashes here.

File details

Details for the file rpycocotools-0.0.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rpycocotools-0.0.7-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 7ec2d7686d862e0e6ab8ae69945148b2141e95911d317a80419c6a9a33a43d7e
MD5 e3990fe8d61da1b9efa1ccad6cd1644e
BLAKE2b-256 f7e7e87b182e1894f129ff5bc5c000febb73ac0334c56a3244c8b09e33f00921

See more details on using hashes here.

File details

Details for the file rpycocotools-0.0.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rpycocotools-0.0.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 64694cdf209ad258c06515220d6d19a82fde3ca66fe66ad01c52e58d8960da54
MD5 0fac9bf3d09c5a0e1e1c9a7d17804322
BLAKE2b-256 5f7543acdf2730b6adf27da3303e731f60ee6d10e3755e4edcbb08c260866774

See more details on using hashes here.

File details

Details for the file rpycocotools-0.0.7-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rpycocotools-0.0.7-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b0b896b430aee33539c0c1f470d6be4fe4ff5bfbdf6910749e08b8d31a3616f7
MD5 94374a308b14ee43064d09e091009128
BLAKE2b-256 581aa2f3ea6ef3b70c37967a3a12721aedcd5408878b4b60c6072aad54edac01

See more details on using hashes here.

File details

Details for the file rpycocotools-0.0.7-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for rpycocotools-0.0.7-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 41d3659aa8731c0340df8d0f2acc2edac42c6feff0b310868971525c0d6bd820
MD5 9d920cca98bea5af8b9b1d624c37efe1
BLAKE2b-256 9a7082dff6f1f226ef716676df954d82be4270aee4e579238474d2197be26445

See more details on using hashes here.

File details

Details for the file rpycocotools-0.0.7-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for rpycocotools-0.0.7-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 3084634b572778c62367e28eca6140229c86ecfcde3c5e488d86347b94c6ee6d
MD5 bb5604f9058f16037a718e27e96fb384
BLAKE2b-256 664c51010149833b33db5b2eb3b3d96340c46f4248947a1d5189aa4b6b56d39b

See more details on using hashes here.

File details

Details for the file rpycocotools-0.0.7-cp310-none-win32.whl.

File metadata

File hashes

Hashes for rpycocotools-0.0.7-cp310-none-win32.whl
Algorithm Hash digest
SHA256 3538387d1077c30cdd04ac7b0831f3649a701f0fe635ca3f3aed9d449cf3a9e9
MD5 a83b0cea363ec92c2780764a48af875e
BLAKE2b-256 6cea680b8e079cbcccf49c14710436607aaa23b0c75526513a569f018b9008b3

See more details on using hashes here.

File details

Details for the file rpycocotools-0.0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rpycocotools-0.0.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 067beec02a16101f25519e2a842bf336b98be5e084c735a8900d553189cb4f7c
MD5 c76e5714c3bc2fdd439f5492b2c562f3
BLAKE2b-256 c4ba6d46b0c3f997d97d11cd2aadd34992ae1eb69eaee757298ee688dec16d70

See more details on using hashes here.

File details

Details for the file rpycocotools-0.0.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rpycocotools-0.0.7-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 7db5d4d3997691d1d30cc05b302df532755b9d84da823a8e5808575f16e76686
MD5 6f517b42faa5a34a9c93354e81fe54fa
BLAKE2b-256 711d947112dbad5aac4b077c75cec6378ce891618796d5d2726e49adb682e825

See more details on using hashes here.

File details

Details for the file rpycocotools-0.0.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rpycocotools-0.0.7-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 03f110648e6d1a2e2af7572e2852f275c47126fe73632d6bc28229211a30e670
MD5 5a80fde7f8bce96928182c358280c51c
BLAKE2b-256 22fa4d2aa7edf14ee250da1c089dad5c25ba65baba3942ce8d9944f49b217eff

See more details on using hashes here.

File details

Details for the file rpycocotools-0.0.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rpycocotools-0.0.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7c4f4705c3d322c5987ba84c8cb515173834081f736b1486f1721c4322c85541
MD5 44c67440ba301a1c416db1bcfa4600d4
BLAKE2b-256 f14d423e62d84b4ff0e33a440483299d7055fa5188043432ee96aa7e9e288e2a

See more details on using hashes here.

File details

Details for the file rpycocotools-0.0.7-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rpycocotools-0.0.7-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7490d44e18e180a1459428f90f01272e5cf7e7396b1e98dd78df1165fa3fe107
MD5 93770fe44510b730c742f0b347a83c4d
BLAKE2b-256 f2dce883a247b21ff553d9367e7e295c2a3fc217ed8ad7c839a2bf53927884b6

See more details on using hashes here.

File details

Details for the file rpycocotools-0.0.7-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for rpycocotools-0.0.7-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 2c10860957d93066fe8e3ff53f8e4dc5b2132671542959863c9a826f035ce3ac
MD5 2338f9f4b4f9fb0993133161212d0c9a
BLAKE2b-256 a8245d30bd2b94ab9473501844f6f271440410d7fa7b9fb4f0d26936e2ccf679

See more details on using hashes here.

File details

Details for the file rpycocotools-0.0.7-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for rpycocotools-0.0.7-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 8ffb5af32bcbfed0a2dfdbcb947310c13901d0fb58c48976e356c3fa825019b0
MD5 3f62590ff6559eb5acfe5d0b9c0b2eae
BLAKE2b-256 c49bbe32fe0936237afe382496ce908c708d808ad69776e7a6c13bb62d6ced6b

See more details on using hashes here.

File details

Details for the file rpycocotools-0.0.7-cp39-none-win32.whl.

File metadata

File hashes

Hashes for rpycocotools-0.0.7-cp39-none-win32.whl
Algorithm Hash digest
SHA256 3870a298da2244e93532213f95642d583775bcd8496045a93e5eb4c961dd0ba0
MD5 675e063671309e876fb7d551c662f0e8
BLAKE2b-256 eb14f3d9f772a0c686c53fe48c177c35c0ac3308341023416b8be624bcbaf3a9

See more details on using hashes here.

File details

Details for the file rpycocotools-0.0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rpycocotools-0.0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 47e23f3221b258e38696c6353dd1aeaca9e835d2623e6703b6ab4fa015678916
MD5 363996aad2c994aa8d8cc3ec16b8335d
BLAKE2b-256 1da96721a81e5cb61118dd549e9c1b63687f694ed21c8fc5c32d4f926c4f68d8

See more details on using hashes here.

File details

Details for the file rpycocotools-0.0.7-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rpycocotools-0.0.7-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 bd4969bdb5d20c34005f741faf9ea768a128ba9a455a65d1ffa5d788bf3496ac
MD5 56e4f5baff56f28d84cfcb179534c6ac
BLAKE2b-256 3f1babee0a4601b1ec1370f43ba7358a0fa60a824a7d4e4a25ddddaac1d4befd

See more details on using hashes here.

File details

Details for the file rpycocotools-0.0.7-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rpycocotools-0.0.7-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 480c51a971bf3750f01f84ab404ce69bf0c808c1002c229e4b2feacb9028ce19
MD5 e0ace004699c7d2bdbccc9c9dd9abbb2
BLAKE2b-256 9c2bd7ca622fee9da5f02b09ce3a899290d9ff6ed21cfef33fd13a3fb6fea6f2

See more details on using hashes here.

File details

Details for the file rpycocotools-0.0.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rpycocotools-0.0.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5cb93ce323d406f2ff98a06ba011c022d1c302d4cd60f84482d4260839c266ec
MD5 99c1d6ac93aeea51fc5b4ee10657424e
BLAKE2b-256 564d9320cdf503905571081127ad1a3c1a4eb099cfae2ff07d9bb3d7ee2dfa96

See more details on using hashes here.

File details

Details for the file rpycocotools-0.0.7-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for rpycocotools-0.0.7-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 96dbf3870359c5fb676013c30b1f8b19e4d7fb18a7a53cd20d6e63b8047e270f
MD5 54a0ec0b1a1d144e2155931a679feca1
BLAKE2b-256 69604a8defc15f369d30af7766e945fbe487d3df65bcbf9302fbcf8773d74ccb

See more details on using hashes here.

File details

Details for the file rpycocotools-0.0.7-cp38-none-win32.whl.

File metadata

File hashes

Hashes for rpycocotools-0.0.7-cp38-none-win32.whl
Algorithm Hash digest
SHA256 306dd00c3845e9ff516f44be1fc88efeaa2d702488aef85f6820f11a2c9e20b7
MD5 30f1a0cb971c0ce9085df7fa0885f478
BLAKE2b-256 8669ced91a4cf03adb6250b42b30b904c3283d5a3cca296b026985e5039d2ec3

See more details on using hashes here.

File details

Details for the file rpycocotools-0.0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rpycocotools-0.0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 545429e5685a38260cae608e3febc85fd3e3d1aa19722d785c8f7ed53f0ca8de
MD5 bd8e867cec5064c9e6e67ab94a9a64fd
BLAKE2b-256 ff7ebc2d45aa210a5941e23afcf7057c22c76d4d4ee48f597ab75ae5847e841d

See more details on using hashes here.

File details

Details for the file rpycocotools-0.0.7-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for rpycocotools-0.0.7-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 501ef2ff6d881447634ff075fe3efe8b96b0171673b21e9477f12a25b5a3c8f1
MD5 827111f4ff182fb9d31494a51c068599
BLAKE2b-256 1d1246ce8639a2c423d137246fc92bbace477c3308914fbefb73b1d3da311865

See more details on using hashes here.

File details

Details for the file rpycocotools-0.0.7-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for rpycocotools-0.0.7-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 0ebab1511cc11eb06514bf854c0c028ab1e1cf1778c70fa069caea89efbb5d3f
MD5 ccf7f9ea30501aaad6003f8b327e1f0e
BLAKE2b-256 cfe4c961781c6f5206b9fef7e35d8587f989aa6653c2d4d9745776a8b2e0b632

See more details on using hashes here.

File details

Details for the file rpycocotools-0.0.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for rpycocotools-0.0.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8dcf58acd311096db64d115e50edd9fed4a227ad20051bf7941688e5ded6dc0a
MD5 698a47d3063d07df175c32b7a80bdfc5
BLAKE2b-256 6a8b15b7abf3ff12b0badef410f9f337cf5cabcd0fb1c335bd3c36ae07287399

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page