Skip to main content

Predict the activity of CRISPR sgRNAs

Project description

Rule Set 3

Python package to predict the activity of CRISPR sgRNA sequences using Rule Set 3

Install

pip install git+ssh://git@github.com/gpp-rnd/rs3.git

Quick Start

Sequence based model

To calculate Rule Set 3 (sequence) scores, import the predict_seq function from the seq module.

from rs3.seq import predict_seq

You can store the 30mer context sequences you want to predict as a list.

context_seqs = ['GACGAAAGCGACAACGCGTTCATCCGGGCA', 'AGAAAACACTAGCATCCCCACCCGCGGACT']

You can specify either Hsu2013 or Chen2013 as the tracrRNA to score with. We generally find any tracrRNA that does not have a T in the fifth position is better predicted with the Chen2013 input.

predict_seq(context_seqs, sequence_tracr='Hsu2013')
Calculating sequence-based features


100%|██████████| 2/2 [00:00<00:00, 244.20it/s]





array([-0.86673522,  1.09560723])

Target based model

To get target scores, which use features at the endogenous target site to make predictions, you must build or load feature matrices for the amino acid sequences, conservation scores, and protein domains.

As an example, we'll calculate target scores for 250 sgRNAs in the GeckoV2 library.

import pandas as pd
from rs3.predicttarg import predict_target
from rs3.targetfeat import (add_target_columns,
                            get_aa_subseq_df,
                            get_protein_domain_features,
                            get_conservation_features)
design_df = pd.read_table('test_data/sgrna-designs.txt')
design_df.head()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
Input Quota Target Taxon Target Gene ID Target Gene Symbol Target Transcript Target Reference Coords Target Alias CRISPR Mechanism Target Domain ... On-Target Rank Weight Off-Target Rank Weight Combined Rank Preselected As Matching Active Arrayed Oligos Matching Arrayed Constructs Pools Containing Matching Construct Pick Order Picking Round Picking Notes
0 PSMB7 2 9606 ENSG00000136930 PSMB7 ENST00000259457.8 NaN NaN CRISPRko CDS ... 1.0 1.0 7 GCAGATACAAGAGCAACTGA NaN BRDN0004619103 NaN 1 0 Preselected
1 PSMB7 2 9606 ENSG00000136930 PSMB7 ENST00000259457.8 NaN NaN CRISPRko CDS ... 1.0 1.0 48 AAAACTGGCACGACCATCGC NaN NaN NaN 2 0 Preselected
2 PRC1 2 9606 ENSG00000198901 PRC1 ENST00000394249.8 NaN NaN CRISPRko CDS ... 1.0 1.0 7 AAAAGATTTGCGCACCCAAG NaN NaN NaN 1 0 Preselected
3 PRC1 2 9606 ENSG00000198901 PRC1 ENST00000394249.8 NaN NaN CRISPRko CDS ... 1.0 1.0 8 CTTTGACCCAGACATAATGG NaN NaN NaN 2 0 Preselected
4 TOP1 2 9606 ENSG00000198900 TOP1 ENST00000361337.3 NaN NaN CRISPRko CDS ... 1.0 1.0 1 NaN NaN BRDN0001486452 NaN 2 1 NaN

5 rows × 60 columns

Throughout the analysis we will be using a core set of ID columns to merge the feature matrices. These ID columns should uniquely identify an sgRNA and its target site.

id_cols = ['sgRNA Context Sequence', 'Target Cut Length', 'Target Transcript', 'Orientation']

Amino acid sequence input

To calculate the amino acid sequence matrix, you must first load the complete sequence from ensembl using the build_transcript_aa_seq_df. See the documentation for the predicttarget module for an example of how to use this function.

In this example we will use amino acid sequences that have been precalculated using the write_transcript_data function in the targetdata module. Check out the documentation for this module for more information on how to use this function.

We use pyarrow to read the written transcript data. The stored transcripts are indexed by their Ensembl ID without the version number identifier. To get this shortened version of the Ensembl ID use the add_target_columns function from the targetfeat module. This function adds the 'Transcript Base' column as well as a column indicating the amino acid index ('AA Index') of the cut site. The 'AA Index' column will be used for merging with the amino acid translations.

design_targ_df = add_target_columns(design_df)
design_targ_df.head()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
Input Quota Target Taxon Target Gene ID Target Gene Symbol Target Transcript Target Reference Coords Target Alias CRISPR Mechanism Target Domain ... Combined Rank Preselected As Matching Active Arrayed Oligos Matching Arrayed Constructs Pools Containing Matching Construct Pick Order Picking Round Picking Notes AA Index Transcript Base
0 PSMB7 2 9606 ENSG00000136930 PSMB7 ENST00000259457.8 NaN NaN CRISPRko CDS ... 7 GCAGATACAAGAGCAACTGA NaN BRDN0004619103 NaN 1 0 Preselected 64 ENST00000259457
1 PSMB7 2 9606 ENSG00000136930 PSMB7 ENST00000259457.8 NaN NaN CRISPRko CDS ... 48 AAAACTGGCACGACCATCGC NaN NaN NaN 2 0 Preselected 46 ENST00000259457
2 PRC1 2 9606 ENSG00000198901 PRC1 ENST00000394249.8 NaN NaN CRISPRko CDS ... 7 AAAAGATTTGCGCACCCAAG NaN NaN NaN 1 0 Preselected 106 ENST00000394249
3 PRC1 2 9606 ENSG00000198901 PRC1 ENST00000394249.8 NaN NaN CRISPRko CDS ... 8 CTTTGACCCAGACATAATGG NaN NaN NaN 2 0 Preselected 263 ENST00000394249
4 TOP1 2 9606 ENSG00000198900 TOP1 ENST00000361337.3 NaN NaN CRISPRko CDS ... 1 NaN NaN BRDN0001486452 NaN 2 1 NaN 140 ENST00000361337

5 rows × 62 columns

transcript_bases = design_targ_df['Transcript Base'].unique()
transcript_bases[0:5]
array(['ENST00000259457', 'ENST00000394249', 'ENST00000361337',
       'ENST00000368328', 'ENST00000610426'], dtype=object)
aa_seq_df = pd.read_parquet('test_data/target_data/aa_seqs.pq', engine='pyarrow',
                            filters=[[('Transcript Base', 'in', transcript_bases)]])
aa_seq_df.head()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
Target Transcript Target Total Length Transcript Base version seq molecule desc id AA len
0 ENST00000259457.8 834 ENST00000259457 3 MAAVSVYAPPVGGFSFDNCRRNAVLEADFAKRGYKLPKVRKTGTTI... protein None ENSP00000259457 277
1 ENST00000394249.8 1863 ENST00000394249 3 MRRSEVLAEESIVCLQKALNHLREIWELIGIPEDQRLQRTEVVKKH... protein None ENSP00000377793 620
2 ENST00000361337.3 2298 ENST00000361337 2 MSGDHLHNDSQIEADFRLNDSHKHKDKHKDREHRHKEHKKEKDREK... protein None ENSP00000354522 765
3 ENST00000368328.5 267 ENST00000368328 4 MALSTIVSQRKQIKRKAPRGFLKRVFKRKKPQLRLEKSGDLLVHLN... protein None ENSP00000357311 88
4 ENST00000610426.5 783 ENST00000610426 1 MPQNEYIELHRKRYGYRLDYHEKKRKKESREAHERSKKAKKMIGLK... protein None ENSP00000483484 260

From the complete transcript translations, we extract an amino acid subsequence as input to our model. The subsequence is centered around the amino acid encoded by the nucleotide preceding the cut site in the direction of transcription. This is the nucleotide that corresponds to the 'Target Cut Length' in a CRISPick design file. We take 16 amino acids on either side of the cut site for a total sequence length of 33.

The get_aa_subseq_df from the targetfeat module will calculate these subsequences from the complete amino acid sequences.

aa_subseq_df = get_aa_subseq_df(sg_designs=design_targ_df, aa_seq_df=aa_seq_df, width=16,
                                id_cols=id_cols)
aa_subseq_df.head()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
Target Transcript Target Total Length Transcript Base version seq molecule desc id AA len Target Cut Length sgRNA Context Sequence Orientation AA Index extended_seq AA 0-Indexed AA 0-Indexed padded seq_start seq_end AA Subsequence
0 ENST00000259457.8 834 ENST00000259457 3 MAAVSVYAPPVGGFSFDNCRRNAVLEADFAKRGYKLPKVRKTGTTI... protein None ENSP00000259457 277 191 TGGAGCAGATACAAGAGCAACTGAAGGGAT sense 64 -----------------MAAVSVYAPPVGGFSFDNCRRNAVLEADF... 63 80 64 96 GVVYKDGIVLGADTRATEGMVVADKNCSKIHFI
1 ENST00000259457.8 834 ENST00000259457 3 MAAVSVYAPPVGGFSFDNCRRNAVLEADFAKRGYKLPKVRKTGTTI... protein None ENSP00000259457 277 137 CCGGAAAACTGGCACGACCATCGCTGGGGT sense 46 -----------------MAAVSVYAPPVGGFSFDNCRRNAVLEADF... 45 62 46 78 AKRGYKLPKVRKTGTTIAGVVYKDGIVLGADTR
2 ENST00000394249.8 1863 ENST00000394249 3 MRRSEVLAEESIVCLQKALNHLREIWELIGIPEDQRLQRTEVVKKH... protein None ENSP00000377793 620 316 TAGAAAAAGATTTGCGCACCCAAGTGGAAT sense 106 -----------------MRRSEVLAEESIVCLQKALNHLREIWELI... 105 122 106 138 EEGETTILQLEKDLRTQVELMRKQKKERKQELK
3 ENST00000394249.8 1863 ENST00000394249 3 MRRSEVLAEESIVCLQKALNHLREIWELIGIPEDQRLQRTEVVKKH... protein None ENSP00000377793 620 787 TGGCCTTTGACCCAGACATAATGGTGGCCA antisense 263 -----------------MRRSEVLAEESIVCLQKALNHLREIWELI... 262 279 263 295 WDRLQIPEEEREAVATIMSGSKAKVRKALQLEV
4 ENST00000361337.3 2298 ENST00000361337 2 MSGDHLHNDSQIEADFRLNDSHKHKDKHKDREHRHKEHKKEKDREK... protein None ENSP00000354522 765 420 AAATACTCACTCATCCTCATCTCGAGGTCT antisense 140 -----------------MSGDHLHNDSQIEADFRLNDSHKHKDKHK... 139 156 140 172 GYFVPPKEDIKPLKRPRDEDDADYKPKKIKTED

The amino acid subsequence input should have a column 'AA Subsequence' as well as the id_cols. If an sgRNA cannot be associated with a translated sequence then it is okay to exclude it from this input.

Lite Scores

You now have all the information you need to calculate "lite" Target Scores, which are less data intensive, with the predict_target function from the predicttarg module.

lite_predictions = predict_target(design_df=design_df,
                                  aa_subseq_df=aa_subseq_df)
design_df['Target Score Lite'] = lite_predictions
design_df.head()
/Users/pdeweird/opt/anaconda3/envs/rs3/lib/python3.8/site-packages/sklearn/base.py:310: UserWarning: Trying to unpickle estimator SimpleImputer from version 1.0.dev0 when using version 0.24.2. This might lead to breaking code or invalid results. Use at your own risk.
  warnings.warn(
/Users/pdeweird/opt/anaconda3/envs/rs3/lib/python3.8/site-packages/sklearn/base.py:310: UserWarning: Trying to unpickle estimator Pipeline from version 1.0.dev0 when using version 0.24.2. This might lead to breaking code or invalid results. Use at your own risk.
  warnings.warn(
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
Input Quota Target Taxon Target Gene ID Target Gene Symbol Target Transcript Target Reference Coords Target Alias CRISPR Mechanism Target Domain ... Off-Target Rank Weight Combined Rank Preselected As Matching Active Arrayed Oligos Matching Arrayed Constructs Pools Containing Matching Construct Pick Order Picking Round Picking Notes Target Score Lite
0 PSMB7 2 9606 ENSG00000136930 PSMB7 ENST00000259457.8 NaN NaN CRISPRko CDS ... 1.0 7 GCAGATACAAGAGCAACTGA NaN BRDN0004619103 NaN 1 0 Preselected 0.012467
1 PSMB7 2 9606 ENSG00000136930 PSMB7 ENST00000259457.8 NaN NaN CRISPRko CDS ... 1.0 48 AAAACTGGCACGACCATCGC NaN NaN NaN 2 0 Preselected 0.048338
2 PRC1 2 9606 ENSG00000198901 PRC1 ENST00000394249.8 NaN NaN CRISPRko CDS ... 1.0 7 AAAAGATTTGCGCACCCAAG NaN NaN NaN 1 0 Preselected -0.129234
3 PRC1 2 9606 ENSG00000198901 PRC1 ENST00000394249.8 NaN NaN CRISPRko CDS ... 1.0 8 CTTTGACCCAGACATAATGG NaN NaN NaN 2 0 Preselected 0.061647
4 TOP1 2 9606 ENSG00000198900 TOP1 ENST00000361337.3 NaN NaN CRISPRko CDS ... 1.0 1 NaN NaN BRDN0001486452 NaN 2 1 NaN -0.009100

5 rows × 61 columns

If you would like to calculate full target scores then follow the sections below.

Protein domain input

To calculate full target scores you will also need inputs for protein domains and conservation.

The protein domain input should have 16 binary columns for 16 different protein domain sources in addition to the id_cols. The protein domain sources are 'Pfam', 'PANTHER', 'HAMAP', 'SuperFamily', 'TIGRfam', 'ncoils', 'Gene3D', 'Prosite_patterns', 'Seg', 'SignalP', 'TMHMM', 'MobiDBLite', 'PIRSF', 'PRINTS', 'Smart', 'Prosite_profiles'. These columns should be kept in order when inputting for scoring.

In this example we will load the protein domain information from a parquet file, which was written using write_transcript_data function in the targetdata module. You can also query transcript data on the fly, by using the build_translation_overlap_df function. See the documentation for the predicttarg module for more information on how to do this.

domain_df = pd.read_parquet('test_data/target_data/protein_domains.pq', engine='pyarrow',
                            filters=[[('Transcript Base', 'in', transcript_bases)]])
domain_df.head()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
type cigar_string id hit_end feature_type description seq_region_name end hit_start translation_id interpro hseqname Transcript Base align_type start
0 Pfam PF12465 36 protein_feature Proteasome beta subunit, C-terminal ENSP00000259457 271 1 976188 IPR024689 PF12465 ENST00000259457 None 235
1 Pfam PF00227 190 protein_feature Proteasome, subunit alpha/beta ENSP00000259457 221 2 976188 IPR001353 PF00227 ENST00000259457 None 41
2 PRINTS PR00141 0 protein_feature Peptidase T1A, proteasome beta-subunit ENSP00000259457 66 0 976188 IPR000243 PR00141 ENST00000259457 None 51
3 PRINTS PR00141 0 protein_feature Peptidase T1A, proteasome beta-subunit ENSP00000259457 182 0 976188 IPR000243 PR00141 ENST00000259457 None 171
4 PRINTS PR00141 0 protein_feature Peptidase T1A, proteasome beta-subunit ENSP00000259457 193 0 976188 IPR000243 PR00141 ENST00000259457 None 182

Now to transform the domain_df into a wide form for model input, we use the get_protein_domain_features function from the targetfeat module.

domain_feature_df = get_protein_domain_features(design_targ_df, domain_df, id_cols=id_cols)
domain_feature_df.head()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
sgRNA Context Sequence Target Cut Length Target Transcript Orientation Pfam PANTHER HAMAP SuperFamily TIGRfam ncoils Gene3D Prosite_patterns Seg SignalP TMHMM MobiDBLite PIRSF PRINTS Smart Prosite_profiles
0 AAAAGAATGATGAAAAGACACCACAGGGAG 244 ENST00000610426.5 sense 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 AAAAGAGCCATGAATCTAAACATCAGGAAT 640 ENST00000223073.6 sense 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0
2 AAAAGCGCCAAATGGCCCGAGAATTGGGAG 709 ENST00000331923.9 sense 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
3 AAACAGAAAAAGTTAAAATCACCAAGGTGT 496 ENST00000283882.4 sense 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 AAACAGATGGAAGATGCTTACCGGGGGACC 132 ENST00000393047.8 sense 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

For input into the predict_target function, the domain_feature_df should have the id_cols as well as columns for each of the 16 protein domain features.

Conservation input

Finally, for the full target model you need to calculate conservation features. The conservation features represent conservation across evolutionary time at the sgRNA cut site and are quantified using PhyloP scores. These scores are available for download by the UCSC genome browser for hg38 (phyloP100way), and mm39 (phyloP35way).

Within this package we query conservation scores using the UCSC genome browser's REST API. To get conservation scores, you can use the build_conservation_df function from the targetdata module. Here we load conservation scores, which were written to parquet using the write_conservation_data function from the targetdata module.

conservation_df = pd.read_parquet('test_data/target_data/conservation.pq', engine='pyarrow',
                                  filters=[[('Transcript Base', 'in', transcript_bases)]])
conservation_df.head()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
exon_id genomic position conservation Transcript Base target position chromosome genome translation length Target Transcript Strand of Target Target Total Length ranked_conservation
0 ENSE00001866322 124415425.0 6.46189 ENST00000259457 1 9 hg38 277 ENST00000259457.8 - 834 0.639089
1 ENSE00001866322 124415424.0 7.48071 ENST00000259457 2 9 hg38 277 ENST00000259457.8 - 834 0.686451
2 ENSE00001866322 124415423.0 6.36001 ENST00000259457 3 9 hg38 277 ENST00000259457.8 - 834 0.622902
3 ENSE00001866322 124415422.0 6.36001 ENST00000259457 4 9 hg38 277 ENST00000259457.8 - 834 0.622902
4 ENSE00001866322 124415421.0 8.09200 ENST00000259457 5 9 hg38 277 ENST00000259457.8 - 834 0.870504

We normalize conservation scores to a within-gene percent rank, in the 'ranked_conservation' column, in order to make scores comparable across genes and genomes. Note that a rank of 0 indicates the least conserved nucleotide and a rank of 1 indicates the most conserved.

To featurize the conservation scores, we average across a window of 4 and 32 nucleotides centered around the nucleotide preceding the cut site in the direction of transcription. Note that this nucleotide is the 2nd nucleotide in the window of four and the 16th nucleotide in the window of 32.

We use the get_conservation_features function from the targetfeat module to get these features from the conservation_df.

For the predict_targ function, we need the id_cols and the columns 'cons_4' and 'cons_32' in the conservation_feature_df.

conservation_feature_df = get_conservation_features(design_targ_df, conservation_df,
                                                    small_width=2, large_width=16,
                                                    conservation_column='ranked_conservation',
                                                    id_cols=id_cols)
conservation_feature_df
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
sgRNA Context Sequence Target Cut Length Target Transcript Orientation cons_4 cons_32
0 AAAAGAATGATGAAAAGACACCACAGGGAG 244 ENST00000610426.5 sense 0.218231 0.408844
1 AAAAGAGCCATGAATCTAAACATCAGGAAT 640 ENST00000223073.6 sense 0.129825 0.278180
2 AAAAGCGCCAAATGGCCCGAGAATTGGGAG 709 ENST00000331923.9 sense 0.470906 0.532305
3 AAACAGAAAAAGTTAAAATCACCAAGGTGT 496 ENST00000283882.4 sense 0.580556 0.602708
4 AAACAGATGGAAGATGCTTACCGGGGGACC 132 ENST00000393047.8 sense 0.283447 0.414293
... ... ... ... ... ... ...
395 TTTGATTGCATTAAGGTTGGACTCTGGATT 246 ENST00000249269.9 sense 0.580612 0.618707
396 TTTGCCCACAGCTCCAAAGCATCGCGGAGA 130 ENST00000227618.8 sense 0.323770 0.416368
397 TTTTACAGTGCGATGTATGATGTATGGCTT 119 ENST00000338366.6 sense 0.788000 0.537417
398 TTTTGGATCTCGTAGTGATTCAAGAGGGAA 233 ENST00000629496.3 sense 0.239630 0.347615
399 TTTTTGTTACTACAGGTTCGCTGCTGGGAA 201 ENST00000395840.6 sense 0.693767 0.639044

400 rows × 6 columns

Full Target Scores

In order to calculate Target Scores you must input the feature matrices and design_df to the predict_target function from the predicttarg module.

target_predictions = predict_target(design_df=design_df,
                                    aa_subseq_df=aa_subseq_df,
                                    domain_feature_df=domain_feature_df,
                                    conservation_feature_df=conservation_feature_df,
                                    id_cols=id_cols)
design_df['Target Score'] = target_predictions
design_df.head()
/Users/pdeweird/opt/anaconda3/envs/rs3/lib/python3.8/site-packages/sklearn/base.py:310: UserWarning: Trying to unpickle estimator SimpleImputer from version 1.0.dev0 when using version 0.24.2. This might lead to breaking code or invalid results. Use at your own risk.
  warnings.warn(
/Users/pdeweird/opt/anaconda3/envs/rs3/lib/python3.8/site-packages/sklearn/base.py:310: UserWarning: Trying to unpickle estimator Pipeline from version 1.0.dev0 when using version 0.24.2. This might lead to breaking code or invalid results. Use at your own risk.
  warnings.warn(
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
Input Quota Target Taxon Target Gene ID Target Gene Symbol Target Transcript Target Reference Coords Target Alias CRISPR Mechanism Target Domain ... Combined Rank Preselected As Matching Active Arrayed Oligos Matching Arrayed Constructs Pools Containing Matching Construct Pick Order Picking Round Picking Notes Target Score Lite Target Score
0 PSMB7 2 9606 ENSG00000136930 PSMB7 ENST00000259457.8 NaN NaN CRISPRko CDS ... 7 GCAGATACAAGAGCAACTGA NaN BRDN0004619103 NaN 1 0 Preselected 0.012467 0.152037
1 PSMB7 2 9606 ENSG00000136930 PSMB7 ENST00000259457.8 NaN NaN CRISPRko CDS ... 48 AAAACTGGCACGACCATCGC NaN NaN NaN 2 0 Preselected 0.048338 0.064880
2 PRC1 2 9606 ENSG00000198901 PRC1 ENST00000394249.8 NaN NaN CRISPRko CDS ... 7 AAAAGATTTGCGCACCCAAG NaN NaN NaN 1 0 Preselected -0.129234 -0.063012
3 PRC1 2 9606 ENSG00000198901 PRC1 ENST00000394249.8 NaN NaN CRISPRko CDS ... 8 CTTTGACCCAGACATAATGG NaN NaN NaN 2 0 Preselected 0.061647 -0.126357
4 TOP1 2 9606 ENSG00000198900 TOP1 ENST00000361337.3 NaN NaN CRISPRko CDS ... 1 NaN NaN BRDN0001486452 NaN 2 1 NaN -0.009100 -0.234410

5 rows × 62 columns

Target Scores can be added directly to the sequence scores for your final Rule Set 3 predictions.

Predict Function

If you don't want to generate the target matrices themselves, you can use the predict function from the predict module.

from rs3.predict import predict
import matplotlib.pyplot as plt
import gpplot
import seaborn as sns

As an example, we calculate predictions for GeckoV2 sgRNAs. The predict function allows for parallel computation for querying databases (n_jobs_min) and featurizing sgRNAs (n_jobs_max). We recommend keeping n_jobs_min set to 1 or 2, as the APIs limit the amount of queries per hour.

design_df = pd.read_table('test_data/sgrna-designs.txt')
import multiprocessing
max_n_jobs = multiprocessing.cpu_count()
scored_designs = predict(design_df, tracr=['Hsu2013', 'Chen2013'], target=True,
                         n_jobs_min=2, n_jobs_max=max_n_jobs,
                         aa_seq_file='./test_data/target_data/aa_seqs.pq',
                         domain_file='./test_data/target_data/protein_domains.pq',
                         conservatin_file='./test_data/target_data/conservation.pq',
                         lite=False)
scored_designs.head()
Calculating sequence-based features


100%|██████████| 400/400 [00:03<00:00, 107.39it/s]


Calculating sequence-based features


100%|██████████| 400/400 [00:00<00:00, 2413.62it/s]
/Users/pdeweird/opt/anaconda3/envs/rs3/lib/python3.8/site-packages/sklearn/base.py:310: UserWarning: Trying to unpickle estimator SimpleImputer from version 1.0.dev0 when using version 0.24.2. This might lead to breaking code or invalid results. Use at your own risk.
  warnings.warn(
/Users/pdeweird/opt/anaconda3/envs/rs3/lib/python3.8/site-packages/sklearn/base.py:310: UserWarning: Trying to unpickle estimator Pipeline from version 1.0.dev0 when using version 0.24.2. This might lead to breaking code or invalid results. Use at your own risk.
  warnings.warn(
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
Input Quota Target Taxon Target Gene ID Target Gene Symbol Target Transcript Target Reference Coords Target Alias CRISPR Mechanism Target Domain ... Picking Round Picking Notes RS3 Sequence Score (Hsu2013 tracr) RS3 Sequence Score (Chen2013 tracr) AA Index Transcript Base Missing conservation information Target Score RS3 Sequence (Hsu2013 tracr) + Target Score RS3 Sequence (Chen2013 tracr) + Target Score
0 PSMB7 2 9606 ENSG00000136930 PSMB7 ENST00000259457.8 NaN NaN CRISPRko CDS ... 0 Preselected 0.750904 0.512534 64 ENST00000259457 False 0.152037 0.902940 0.664571
1 PSMB7 2 9606 ENSG00000136930 PSMB7 ENST00000259457.8 NaN NaN CRISPRko CDS ... 0 Preselected -0.218514 -0.095684 46 ENST00000259457 False 0.064880 -0.153634 -0.030804
2 PRC1 2 9606 ENSG00000198901 PRC1 ENST00000394249.8 NaN NaN CRISPRko CDS ... 0 Preselected -0.126708 -0.307830 106 ENST00000394249 False -0.063012 -0.189720 -0.370842
3 PRC1 2 9606 ENSG00000198901 PRC1 ENST00000394249.8 NaN NaN CRISPRko CDS ... 0 Preselected 0.690050 0.390095 263 ENST00000394249 False -0.126357 0.563693 0.263738
4 TOP1 2 9606 ENSG00000198900 TOP1 ENST00000361337.3 NaN NaN CRISPRko CDS ... 1 NaN 0.451508 -0.169016 140 ENST00000361337 False -0.234410 0.217098 -0.403426

5 rows × 68 columns

In the above function

  • tracr - tracr to calculate scores for. If a list is supplied instead of a string, scores will be calculated for both tracrs
  • target - boolean indicating whether to calculate target scores
  • n_jobs_min, n_jobs_max - number of cpus to use for parallel computation
  • aa_seq_file, domain_file, conservatin_file - precalculated parquet files. Optional inputs as these features can also be calculated on the fly
  • lite - boolean indicating whether to calculate lite target scores

By listing both tracrRNAs tracr=['Hsu2013', 'Chen2013'] and setting target=True, we calculate 5 unique scores: one sequence score for each tracr, the target score, and the sequence scores plus the target score.

In this example the amino acid sequences, protein domains and conservation scores were prequeried using the write_transcript_data and write_consevation_data functions from the targetdata module. Pre-querying these data can be helpful for large scale design runs.

We can compare these predictions against the observed activity from GeckoV2

gecko_activity = pd.read_csv('test_data/Aguirre2016_activity.csv')
gecko_activity.head()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
sgRNA Sequence sgRNA Context Sequence Target Gene Symbol Target Cut % avg_mean_centered_neg_lfc
0 AAAAAACTTACCCCTTTGAC AAAAAAAAAACTTACCCCTTTGACTGGCCA CPSF6 22.2 -1.139819
1 AAAAACATTATCATTGAGCC TGGCAAAAACATTATCATTGAGCCTGGATT SKA3 62.3 -0.793055
2 AAAAAGAGATTGTCAAATCA TATGAAAAAGAGATTGTCAAATCAAGGTAG AQR 3.8 0.946453
3 AAAAAGCATCTCTAGAAATA TTCAAAAAAGCATCTCTAGAAATATGGTCC ZNHIT6 61.7 -0.429590
4 AAAAAGCGAGATACCCGAAA AAAAAAAAAGCGAGATACCCGAAAAGGCAG ABCF1 9.4 0.734196
gecko_activity_scores = (gecko_activity.merge(scored_designs,
                                              how='inner',
                                              on=['sgRNA Sequence', 'sgRNA Context Sequence',
                                                  'Target Gene Symbol', 'Target Cut %']))
gecko_activity_scores.head()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
sgRNA Sequence sgRNA Context Sequence Target Gene Symbol Target Cut % avg_mean_centered_neg_lfc Input Quota Target Taxon Target Gene ID Target Transcript ... Picking Round Picking Notes RS3 Sequence Score (Hsu2013 tracr) RS3 Sequence Score (Chen2013 tracr) AA Index Transcript Base Missing conservation information Target Score RS3 Sequence (Hsu2013 tracr) + Target Score RS3 Sequence (Chen2013 tracr) + Target Score
0 AAAACTGGCACGACCATCGC CCGGAAAACTGGCACGACCATCGCTGGGGT PSMB7 16.4 -1.052943 PSMB7 2 9606 ENSG00000136930 ENST00000259457.8 ... 0 Preselected -0.218514 -0.095684 46 ENST00000259457 False 0.064880 -0.153634 -0.030804
1 AAAAGATTTGCGCACCCAAG TAGAAAAAGATTTGCGCACCCAAGTGGAAT PRC1 17.0 0.028674 PRC1 2 9606 ENSG00000198901 ENST00000394249.8 ... 0 Preselected -0.126708 -0.307830 106 ENST00000394249 False -0.063012 -0.189720 -0.370842
2 AAAAGTCCAAGCATAGCAAC CGGGAAAAGTCCAAGCATAGCAACAGGTAA TOP1 6.5 0.195309 TOP1 2 9606 ENSG00000198900 ENST00000361337.3 ... 0 Preselected -0.356580 -0.082514 50 ENST00000361337 False -0.354708 -0.711288 -0.437222
3 AAAGAAGCCTCAACTTCGTC AGCGAAAGAAGCCTCAACTTCGTCTGGAGA CENPW 37.5 -1.338209 CENPW 2 9606 ENSG00000203760 ENST00000368328.5 ... 0 Preselected -0.663540 -0.303324 34 ENST00000368328 False 0.129285 -0.534255 -0.174039
4 AAAGTGTGCTTTGTTGGAGA TACTAAAGTGTGCTTTGTTGGAGATGGCTT NSA2 60.0 -0.175219 NSA2 2 9606 ENSG00000164346 ENST00000610426.5 ... 0 Preselected -0.413636 -0.585179 157 ENST00000610426 False -0.113577 -0.527213 -0.698756

5 rows × 69 columns

Since GeckoV2 was screened with the tracrRNA from Hsu et al. 2013, we'll use these scores sequence scores a part of our final prediction.

plt.subplots(figsize=(4,4))
gpplot.point_densityplot(gecko_activity_scores, y='avg_mean_centered_neg_lfc',
                         x='RS3 Sequence (Hsu2013 tracr) + Target Score')
gpplot.add_correlation(gecko_activity_scores, y='avg_mean_centered_neg_lfc',
                       x='RS3 Sequence (Hsu2013 tracr) + Target Score')
sns.despine()

png

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rs3-0.0.9.tar.gz (6.1 MB view hashes)

Uploaded Source

Built Distribution

rs3-0.0.9-py3-none-any.whl (6.2 MB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page