RS pretrained models in huggingface style
Project description
rshf
Remote sensing pretrained models easy loading using huggingface -- PyTorch (for fast benchmarking)
Installation:
pip install rshf
Example:
from rshf.satmae import SatMAE
model = SatMAE.from_pretrained("MVRL/satmae-vitlarge-fmow-pretrain-800")
input = model.transform(torch.randint(0, 256, (224, 224, 3)).float().numpy(), 224).unsqueeze(0)
print(model.forward_encoder(input, mask_ratio=0.0)[0].shape)
TODO:
- Add transforms for each model
- Add Documentation (https://rshf-docs.readthedocs.io/en/latest/)
- Add initial set of models
Citations
Model Type | Venue | Citation |
---|---|---|
BioCLIP | CVPR'24 | link |
CLIP | ICML'21 | link |
CROMA | NeurIPS'23 | link |
GeoCLAP | BMVC'23 | link |
GeoCLIP | NeurIPS'23 | link |
Presto | link | |
Prithvi | link | |
RemoteCLIP | TGRS'23 | link |
RVSA | TGRS'22 | link |
Sat2Cap | EarthVision'24 | link |
SatClip | link | |
SatMAE | NeurIPS'22 | link |
SatMAE++ | CVPR'24 | link |
ScaleMAE | ICCV'23 | link |
SINR | ICML'23 | link |
StreetCLIP | link | |
TaxaBind | WACV'25 | link |
List of models available here: Link
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
rshf-0.1.2.tar.gz
(2.0 MB
view details)
Built Distribution
rshf-0.1.2-py3-none-any.whl
(2.0 MB
view details)
File details
Details for the file rshf-0.1.2.tar.gz
.
File metadata
- Download URL: rshf-0.1.2.tar.gz
- Upload date:
- Size: 2.0 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b6ee6640e748679da7675202cf1f5a1ab26c64f64fefbc7afe294feb141c28aa |
|
MD5 | 047b176d1edae6efc3eaa9694b994dd7 |
|
BLAKE2b-256 | a0b9509b472344b0ecf0b9e4d4e66f84d796a130e696b48d6314185c11f502bd |
File details
Details for the file rshf-0.1.2-py3-none-any.whl
.
File metadata
- Download URL: rshf-0.1.2-py3-none-any.whl
- Upload date:
- Size: 2.0 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 852a434a2cb961c0635b8849907093a9aa626bef019b3317c076c19ad03de891 |
|
MD5 | 140ba1a6535cf139cf56252a6ed57da0 |
|
BLAKE2b-256 | 6f41c22ba3b44b5622a630ea1dcf146083a7912b84f651d1261366b0111cf319 |