Skip to main content

RS pretrained models in huggingface style

Project description

rshf

Remote sensing pretrained models easy loading using huggingface -- PyTorch (for fast benchmarking)

Installation:

pip install rshf

Example:

from rshf.satmae import SatMAE
model = SatMAE.from_pretrained("MVRL/satmae-vitlarge-fmow-pretrain-800")
input = model.transform(torch.randint(0, 256, (224, 224, 3)).float().numpy(), 224).unsqueeze(0)
print(model.forward_encoder(input, mask_ratio=0.0)[0].shape)

TODO:

Citations

Model Type Venue Citation
BioCLIP CVPR'24 link
CLIP ICML'21 link
CROMA NeurIPS'23 link
GeoCLAP BMVC'23 link
GeoCLIP NeurIPS'23 link
Presto link
Prithvi link
RemoteCLIP TGRS'23 link
RVSA TGRS'22 link
Sat2Cap EarthVision'24 link
SatClip link
SatMAE NeurIPS'22 link
SatMAE++ CVPR'24 link
ScaleMAE ICCV'23 link
SINR ICML'23 link
StreetCLIP link

List of models available here: Link

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rshf-0.0.15.tar.gz (2.0 MB view details)

Uploaded Source

Built Distribution

rshf-0.0.15-py3-none-any.whl (2.0 MB view details)

Uploaded Python 3

File details

Details for the file rshf-0.0.15.tar.gz.

File metadata

  • Download URL: rshf-0.0.15.tar.gz
  • Upload date:
  • Size: 2.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for rshf-0.0.15.tar.gz
Algorithm Hash digest
SHA256 f1ecce1f32943ba5483b6b1abdd5f6fff6990cf5b8f59a51be97194d0cab57c1
MD5 dba36e7fbb4d573cf725ff40c7af71fb
BLAKE2b-256 618bf275377e88e769ac02912eb4d8ec74ae98369da3af702fa1d0dedc455ce5

See more details on using hashes here.

File details

Details for the file rshf-0.0.15-py3-none-any.whl.

File metadata

  • Download URL: rshf-0.0.15-py3-none-any.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for rshf-0.0.15-py3-none-any.whl
Algorithm Hash digest
SHA256 c7f0114636cb48928e2d6a85fe52892cecb3236e90f930b6a154ac28e173c381
MD5 79a50008470e2cc09b2ec37bebf0a404
BLAKE2b-256 144cc5956766150249db865b26b81d7f15c1502c2598ef96ccc3b8dbc127b941

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page