Skip to main content

Convert ONNX models to .rten format

Project description

rten-convert

rten-convert converts ONNX models to .rten format, for use with the RTen machine learning runtime.

Installation

The conversion tool requires Python >= 3.10. To install the tool, run:

pip install rten-convert

Usage

rten-convert your-model.onnx your-model.rten

The second argument is optional. If omitted the output filename will be the input filename with the .onnx extension replaced with .rten.

Versioning

The rten-convert tool and rten library use common version numbering. A model produced by rten-convert version X can be executed by rten version X or newer.

Development

To install this tool from a checkout of the Git repository, run:

pip install -e .

After making changes, run the QA checks. First, install the development dependencies:

pip install -r requirements.dev.txt

Then run:

make check

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rten_convert-0.12.0.tar.gz (32.5 kB view details)

Uploaded Source

Built Distribution

rten_convert-0.12.0-py3-none-any.whl (33.0 kB view details)

Uploaded Python 3

File details

Details for the file rten_convert-0.12.0.tar.gz.

File metadata

  • Download URL: rten_convert-0.12.0.tar.gz
  • Upload date:
  • Size: 32.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.9

File hashes

Hashes for rten_convert-0.12.0.tar.gz
Algorithm Hash digest
SHA256 c88a38769ce33530f17172a1c17b367bec229014dfc662809567564ecb0a01e4
MD5 39a3d0f4c505c736c9b7f70d5d43a5e2
BLAKE2b-256 f9badfd8c4375207dcd05f75fee5f631dceb9ccddf850072b76a7366907cd41d

See more details on using hashes here.

File details

Details for the file rten_convert-0.12.0-py3-none-any.whl.

File metadata

File hashes

Hashes for rten_convert-0.12.0-py3-none-any.whl
Algorithm Hash digest
SHA256 e1fc17d2c85e78ef1c77c7cf91656ecde52f29423d524bcf58cc68ef4cfc1d70
MD5 112ef4f34f72452696a0455f908958b7
BLAKE2b-256 513549258e02129825168e18729d4344ff8031c5c23bab306ade9d316f3ad766

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page