Skip to main content

RTModel is a tool for microlensing event interpretation.

Project description

RTModel

RTModel is a package for modeling and interpretation of microlensing events. It uses photometric and/or astrometric time series collected from ground and/or space telescopes to propose one or more possible models among the following:

  • Single-lens-single-source microlensing (i.e. Paczynski)
  • Single-lens-binary-source microlensing (with or without xallarap)
  • Binary-lens-single-source microlensing (including planetary microlensing, parallax and orbital motion)

All models include the finite-size of the source(s).

The modeling strategy is based on a grid search in the parameter space for single-lens models, whereas a template library for binary-lens models is used including all possible geometries of the source trajectory with respect to the caustics. In addition to this global search, planets are searched where maximal deviations from a Paczynski model occurs.

The library is in the form of a standard Python package that launches specific subprocesses for different tasks. Model fitting is executed in parallel exploiting available processors in the machine. The full modeling may take from one to three hours depending on the event and on the machine speed. The results of modeling are given in the form of a text assessment file; in addition, final models are made available with their parameters and covariance matrices.

RTModel also includes a subpackage RTModel.plotmodel that allows an immediate visualization of models and the possibility to review each individual fitting process as an animated gif.

A second subpackage RTModel.templates helps the user in the visualization and customization of the template library.

Attribution

RTModel has been created by Valerio Bozza (University of Salerno) as a product of many years of direct experience on microlensing modeling (see RTModel webpage).

Any scientific use of RTModel should be acknowledged by citing the paper V.Bozza, A&A 688 (2024) 83, describing all the algorithms behind the code.

We are grateful to Greg Olmschenk, who revised the package installation in order to make it as cross-platform as possible. We also thank all the users who are providing suggestions, reporting bugs or failures: Etienne Bachelet, David Bennett, Jonathan Brashear, Laura Salmeri, Stela Ishitani Silva, Yiannis Tsapras, Sigfried Vanaverbeke, Keto Zhang.

Installation

The easiest way to install RTModel is through pip.

First clone this repository.

Then go to the repository directory and type

pip install .

In alternative, you may directly install it from PyPI without cloning this repository:

pip install RTModel

Currently, RTModel works on Linux, Windows and MacOS, requiring Python >= 3.7. A C++ compiler compatible with C++17 standard is needed for installation. RTModel uses VBMicrolensing for all calculations. You are encouraged to cite the relevant papers listed in that repository as well.

Documentation

Full documentation for the use of RTModel is available.

In the directory events we provide some microlensing data on which you may practise with RTModel.

A Jupyter notebook for quick start-up is also available in the jupyter folder.

License

RTModel is freely available to the community under the GNU Lesser General Public License Version 3 included in this repository.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rtmodel-3.1.tar.gz (5.8 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

rtmodel-3.1-cp313-cp313-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.13Windows x86-64

rtmodel-3.1-cp313-cp313-win32.whl (1.3 MB view details)

Uploaded CPython 3.13Windows x86

rtmodel-3.1-cp313-cp313-musllinux_1_2_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

rtmodel-3.1-cp313-cp313-musllinux_1_2_i686.whl (2.6 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ i686

rtmodel-3.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

rtmodel-3.1-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ i686

rtmodel-3.1-cp313-cp313-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

rtmodel-3.1-cp313-cp313-macosx_10_15_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.13macOS 10.15+ x86-64

rtmodel-3.1-cp312-cp312-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.12Windows x86-64

rtmodel-3.1-cp312-cp312-win32.whl (1.3 MB view details)

Uploaded CPython 3.12Windows x86

rtmodel-3.1-cp312-cp312-musllinux_1_2_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

rtmodel-3.1-cp312-cp312-musllinux_1_2_i686.whl (2.6 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ i686

rtmodel-3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

rtmodel-3.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ i686

rtmodel-3.1-cp312-cp312-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

rtmodel-3.1-cp312-cp312-macosx_10_15_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.12macOS 10.15+ x86-64

rtmodel-3.1-cp311-cp311-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.11Windows x86-64

rtmodel-3.1-cp311-cp311-win32.whl (1.3 MB view details)

Uploaded CPython 3.11Windows x86

rtmodel-3.1-cp311-cp311-musllinux_1_2_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

rtmodel-3.1-cp311-cp311-musllinux_1_2_i686.whl (2.6 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ i686

rtmodel-3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

rtmodel-3.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ i686

rtmodel-3.1-cp311-cp311-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

rtmodel-3.1-cp311-cp311-macosx_10_15_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11macOS 10.15+ x86-64

rtmodel-3.1-cp310-cp310-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.10Windows x86-64

rtmodel-3.1-cp310-cp310-win32.whl (1.3 MB view details)

Uploaded CPython 3.10Windows x86

rtmodel-3.1-cp310-cp310-musllinux_1_2_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

rtmodel-3.1-cp310-cp310-musllinux_1_2_i686.whl (2.6 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ i686

rtmodel-3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

rtmodel-3.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ i686

rtmodel-3.1-cp310-cp310-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

rtmodel-3.1-cp310-cp310-macosx_10_15_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10macOS 10.15+ x86-64

rtmodel-3.1-cp39-cp39-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.9Windows x86-64

rtmodel-3.1-cp39-cp39-win32.whl (1.3 MB view details)

Uploaded CPython 3.9Windows x86

rtmodel-3.1-cp39-cp39-musllinux_1_2_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ x86-64

rtmodel-3.1-cp39-cp39-musllinux_1_2_i686.whl (2.6 MB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ i686

rtmodel-3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

rtmodel-3.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ i686

rtmodel-3.1-cp39-cp39-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

rtmodel-3.1-cp39-cp39-macosx_10_15_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9macOS 10.15+ x86-64

rtmodel-3.1-cp38-cp38-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.8Windows x86-64

rtmodel-3.1-cp38-cp38-win32.whl (1.3 MB view details)

Uploaded CPython 3.8Windows x86

rtmodel-3.1-cp38-cp38-musllinux_1_2_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8musllinux: musl 1.2+ x86-64

rtmodel-3.1-cp38-cp38-musllinux_1_2_i686.whl (2.6 MB view details)

Uploaded CPython 3.8musllinux: musl 1.2+ i686

rtmodel-3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

rtmodel-3.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ i686

rtmodel-3.1-cp38-cp38-macosx_11_0_arm64.whl (1.3 MB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

rtmodel-3.1-cp38-cp38-macosx_10_15_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8macOS 10.15+ x86-64

rtmodel-3.1-cp37-cp37m-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.7mWindows x86-64

rtmodel-3.1-cp37-cp37m-win32.whl (1.3 MB view details)

Uploaded CPython 3.7mWindows x86

rtmodel-3.1-cp37-cp37m-musllinux_1_2_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7mmusllinux: musl 1.2+ x86-64

rtmodel-3.1-cp37-cp37m-musllinux_1_2_i686.whl (2.6 MB view details)

Uploaded CPython 3.7mmusllinux: musl 1.2+ i686

rtmodel-3.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

rtmodel-3.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (2.2 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ i686

rtmodel-3.1-cp37-cp37m-macosx_10_15_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.7mmacOS 10.15+ x86-64

File details

Details for the file rtmodel-3.1.tar.gz.

File metadata

  • Download URL: rtmodel-3.1.tar.gz
  • Upload date:
  • Size: 5.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.9

File hashes

Hashes for rtmodel-3.1.tar.gz
Algorithm Hash digest
SHA256 572954c377cd996cdee6361c32abcb9ac0a066bf4a7eb8e28b2f0c648961a915
MD5 7e9575e2ed73f4a899d7c9d8ce5124be
BLAKE2b-256 f9dd408614abdf22a28d2e4b0bca229ad81ada9c0cbb96bf4b43f548fd22050f

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: rtmodel-3.1-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.9

File hashes

Hashes for rtmodel-3.1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 83e6f5e2ef754a1f3dae36abcc28d3c653dd374c52cefff69e72a990df84a07b
MD5 1ed7c1bef7d186871438e419faa0609f
BLAKE2b-256 c2c90785cf4d9b022eee7a285eb463b1a3d6f39eb3d9b5d6292db71d1579c9ae

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp313-cp313-win32.whl.

File metadata

  • Download URL: rtmodel-3.1-cp313-cp313-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.9

File hashes

Hashes for rtmodel-3.1-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 dad840f7872bcd46d3f6f8f50fa73d522e99d8cc46d381897243963e525b11bf
MD5 32c26115610f0e974731ff74d7fa4793
BLAKE2b-256 17749915f81b5a5bdb78a00758d92011d465dcd684058f53d1bd957da6a62555

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rtmodel-3.1-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 944e27d04fb8fb9bfc2a8a517e4587cfb1e00214f74f96c780c3dd723dc68ee1
MD5 57fc03fa213e9eefec486d75d1e7b5b3
BLAKE2b-256 6ea4d7e435601442074f395445cfb7623e91757065f2187d9d96a61e48ae642f

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp313-cp313-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rtmodel-3.1-cp313-cp313-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 677138d5037b9529a567003a5c47063f835af51911c880e3e9a3542a393bb85c
MD5 f67060e88ab754f9f7a6fcc07998759c
BLAKE2b-256 b94006cb257cdf5081df9b1d54924985d7c4a21565991b2242fe35103f535436

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rtmodel-3.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aa4619530158c47eed5161c70c53d7e157c76242e09dd1ed8e34b0a91c83392a
MD5 62497ca93f8b9729a2aa259379c9b5bb
BLAKE2b-256 518a2a03b8cbf1e214823c68fac62896ccf4666d9800610f23a91759963509ab

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rtmodel-3.1-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 462e3ff00ab8620ddf4dd96113441237e60c87affb698f8e3398ee86d44f9b5c
MD5 02364b94059818efb38f86a1704d47cb
BLAKE2b-256 6b06ce421722966c3566b7ca57293b99378bee89beaec03c9d762d483df630b4

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rtmodel-3.1-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 57ab94e716a6fdea7e3c2b59746c2fe23b4db13669d4f00d84062d8bf65935ea
MD5 55b915f438655eac0ccfefcadf817024
BLAKE2b-256 3d47e27f77473201bb206e1f29d17c89817aae18536abbf994853b659d98da01

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp313-cp313-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for rtmodel-3.1-cp313-cp313-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 16067210e6cd63ec1d792695a77fc9743ef778399faccbbbf546308cb38c6879
MD5 8efe0f62e5dffb59c9ac903b30a9dcfe
BLAKE2b-256 21a48b6247c01d390c865c41a1f87eae8fb6cf459b0debce8f5bb81c41dd5c6d

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: rtmodel-3.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.9

File hashes

Hashes for rtmodel-3.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 a1eaee7c25980c799ae1dd7c2aad06ee0de0cef18c601df6ccdb9e2e35b02885
MD5 c5b4fe917aeaacae76d04bfea57309c0
BLAKE2b-256 0c5ac303167a09a440cda5842b819ffe827a53070c8cdd8315711fedde73bfd9

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp312-cp312-win32.whl.

File metadata

  • Download URL: rtmodel-3.1-cp312-cp312-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.9

File hashes

Hashes for rtmodel-3.1-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 3f1ee659fb24bf77a22c56ec742fc3b9ad4d612e332f1fae659ff8fb9ac501a8
MD5 8f814c40bb058468878a24fe5ebb6e72
BLAKE2b-256 4e208116b76118f575eb14d2a3f6b5db3920b006baa40d90d7cbb3fb15654f98

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rtmodel-3.1-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 58bf492bf2c8c3a337a45b6da6097499cf958778c7beb1851f1432f21a847d8e
MD5 6c3cc7cb66749cf6b80c967d27866dde
BLAKE2b-256 c358fdcc03b682e31074d596c419639d7d690de6733080921eaa58baee4e46c6

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rtmodel-3.1-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 b9f00c0b83eb8de905a40484803004a82fe9afe230b8b17e14507392698ab56f
MD5 a7c2d1050d373208ad1cb98418db42b9
BLAKE2b-256 c401d2b789d335af1039f438a6a1c6760555a8887bae6d2819a1589756d2a8de

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rtmodel-3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b9819f2c15a1b4c551535f8c5e4287025b68e0932858ecf40c95593554ac449b
MD5 50c7c26654818ed10dc59458c992705d
BLAKE2b-256 5038d8c7a2a78888b205c3022edb8d7e029578895c4f97260b6e319255d97ad8

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rtmodel-3.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8dd6e25b61486616f2264615812bf6f5a6f68d2508584802a18807ce31a2704f
MD5 a574eb9246351ddbd390524b646df77a
BLAKE2b-256 3b01887f6ee03a42d60849ccba1e258b720ba2cd62c2ce1458e6f23ca424a784

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rtmodel-3.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 291698231c68b205dda5e05ad40b818e233c338f7be3eadbfca90587f7a26485
MD5 78bc68160698e8440c44bbcf2e19f63e
BLAKE2b-256 21aae7ac4abce51579a58da6439fede590719b2d31df9e38462cee9665e84dfd

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp312-cp312-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for rtmodel-3.1-cp312-cp312-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 4ffdbb0a441941f27eb2bb53fbfa260c838767422d9ec3fef5a78045d73ebfd3
MD5 87e0302b479fb65a8fc04139a331a4ee
BLAKE2b-256 45f156cccd36aa7b8a074d7c237fa45956fb304fe5fb4dab6b5c582a13648a2c

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: rtmodel-3.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.9

File hashes

Hashes for rtmodel-3.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 da53c1b2edd0213ed13175f157ae9f8477eecc576fbfab72fd6f7a87b7af51c1
MD5 981fa18dbe2f640be0391e3bbb3af04c
BLAKE2b-256 dd501379b7043c8e7fd56ff1dfd22f3a587fefa9d42f1b0bc172c1af03ea63ab

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: rtmodel-3.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.9

File hashes

Hashes for rtmodel-3.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 4984fcadcc37a5fdda20cd1dd7a071b2235fb8e993cc0657660da7f383c58d0f
MD5 98128c864c99b45bbdde4c6be7bd68ef
BLAKE2b-256 ca055db8715dda7f254c1d42a7cb74b05ac45b2e74ad36d4c1f8ef03aa238741

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rtmodel-3.1-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 b9a79b1e66e7a1bceb0064e9816c9791debd4649dc8afa9b494bf1e7e4e25072
MD5 6f77201cff1c0963ebb764c767f81bb8
BLAKE2b-256 bb27fef1d593ed4f12dbe5950ae37ab72e1d4417df304cfd6ba8ba2c93e25c29

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rtmodel-3.1-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 5d9f728e440cba2579d941854ffa64e6be66062e8e0afbeb57f86cc5f75eb5ec
MD5 49e7eb5f6457651af2cf049055e786b7
BLAKE2b-256 bca446fdeab2769414c08cbc4d61541c20d5ee492ece9ee464a886c8df01c9c0

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rtmodel-3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 92b9fed3e5cae790609fbdd1ada93fd3b618a3f1ff440c7fc4a7a9fc01890a6a
MD5 702ccbd9bb0e4d179d838133e554e14f
BLAKE2b-256 e744ffed033d9b60e6807f4029fcddd0e27d9e7f9614ba3ad66a6ef81ab29798

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rtmodel-3.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 11e359f33a4c13b8928963dd80ca10e198bc37d7069041e00d4036cbd1f48a5b
MD5 1b2ddc22d556f1496624c94362d52d0f
BLAKE2b-256 ce61a6571d0365343d884f76404118b16e52300686ab3d0a280fe6e0d4ce488a

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rtmodel-3.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 322ea0b3253f48b37bcf67a2e072e9d30052ceb39a09b08cb54308270c28a5a3
MD5 465b702b7a6dcee94ec228078b21f368
BLAKE2b-256 616e62e7f505d0c98d4eae595863155144aca6c0692e9c15915568e51ed485ae

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for rtmodel-3.1-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 11a780bc71332f260cb762aa42acf7294f0078c69cf297f82976ba77d7f2eb11
MD5 4a508e579bcfb981f9cb25ded7acc480
BLAKE2b-256 30ecad7547d626fff39910e4282363232a47b7559e502a405047030c07d1b413

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: rtmodel-3.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.9

File hashes

Hashes for rtmodel-3.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5693e7e580fb3ee621d5c80340e4af4a39f3ebbb8855027189f9faf7ea86698b
MD5 0717608a9b098d855aca632ef6a6f891
BLAKE2b-256 ed34271399e46a6c2dfac2ae89a2fd779515e6e654a4163c9d4ad1ae6ae79c22

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: rtmodel-3.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.9

File hashes

Hashes for rtmodel-3.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 bbb75e290fe0bc5769dc4d78296a4e9aac1d0eba09a9483d5b9c7474f4d7fad0
MD5 bc6e3c3ff733bccfaf1e07402c6ad1ef
BLAKE2b-256 92c0432625ae936ea332455999835181aff0d6d4bd4b7595aaa3beb5d8f30543

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rtmodel-3.1-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 fa79ec6b2e11a90e5209bca6345a09facb2adbc0ceb80741a0995e06213819ee
MD5 31ee621f3c7d10b1b60580ef84914fd9
BLAKE2b-256 db8d65a3624d38d3fe81172024127692788e46f7c09bd748e31eafd511cdd19a

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for rtmodel-3.1-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 7dd474649b91acef49950c49fc1a8143d258dc0fda46da1d4ff90e1373c99bd7
MD5 da18cbe20af66fa2b462c202cbda0bc2
BLAKE2b-256 d9892648c9305c90e9c70e45d6a803fd612c3e9fe55c88fd0d2908abace6d967

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rtmodel-3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b1bd080ab0c6109859b28114fc62ea846f529f82085a2c87e0e60b0f2e038939
MD5 a41d7001902a83f1ae04167bfbf12270
BLAKE2b-256 067dcf2322cd87fef3e83408f0ebbe8ae4892d30590e1601e388ff40f8a1d696

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rtmodel-3.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 66f3c2fdb05281b03ba29b372eee72fb77f55c53d9fd042c4cee09a053a0be73
MD5 a28cc2a08304b8276f499bb2ab9275eb
BLAKE2b-256 2ac2b3410c0143f59e0bb5a801808ebcb14d5ba5e4d3be71db6d70828d699f0b

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rtmodel-3.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 25c27f8ebc8d2e972b94cf3cac79b4de4aa4b1ca6252ca274a5d297c2fcb630d
MD5 dc66720eb132fb9fe3401e0ae4c4d732
BLAKE2b-256 02fb169071805cf6dc48af8071ee8c8e5c62dbeb51a1f774b2141e1db334693e

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for rtmodel-3.1-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 27a093f0ca96cbc1f141791e27fc30dea06283328f7cbcea8100ca9d54564f57
MD5 f6384d9df6b572a00ffae3ab8018eb09
BLAKE2b-256 619f30aca737bf1b9f1e3be1e964d5d51183d5f48efc4d2806f50e4535ccb3aa

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rtmodel-3.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.9

File hashes

Hashes for rtmodel-3.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 35694f52c6e205a78fdd4572a445d935b2bf45a3a0ddb2508ae9a5ca4b30b34b
MD5 df8843b113d4dcf388d700b1ebc2e46b
BLAKE2b-256 cc20300bd2d38b35caf9c73cf0fbf611ce8ef38e47db794ce5028e2f5cdf5822

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: rtmodel-3.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.9

File hashes

Hashes for rtmodel-3.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 7a0769462783146d1bfc093bcddddc13014077f15c4c284349ed5f6eb8802e3e
MD5 6b2c73252fe40c6b6623be94a27b5485
BLAKE2b-256 c1e733a10b1af553a19036f60d7773f85b8fcb9500894ba118819c67306fe9aa

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rtmodel-3.1-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 5d3968bfd767bbb45bfa1cce244fece2daaa63c72583f40a609a5979734a4c56
MD5 f8efa139d03d54b081cee6f85f93d0de
BLAKE2b-256 8c3a9b286b4a2690dae6d8f85f0b655db5f9f30f83acb93bbf610e3fed0b7965

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

  • Download URL: rtmodel-3.1-cp39-cp39-musllinux_1_2_i686.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.9, musllinux: musl 1.2+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.9

File hashes

Hashes for rtmodel-3.1-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 45d4362b37e40826eb3f80d0cce64aab3e4ad783535a5298b51edf2ea81484f2
MD5 1d717a5fc0bd1f8ad6bb6773192d3cb2
BLAKE2b-256 cd95def6231b6f757f26713dda73aa93c18222e9b18b4733308c91fbe5305b53

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rtmodel-3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ff57684602e80fca72148be544ee4b6d8ba99041429e0155078186036c9cee0e
MD5 62e4753762fecd04d0a349c2afebd497
BLAKE2b-256 d6bf1666d13c723eb6a3d09780e2443bda29859fe6dd892cf151b0c631f65708

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rtmodel-3.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7e0774c1c8c7352a426b2fed1de17650397d2c7de159c6715f3ffe4cc78ea3f1
MD5 db7b4e821cd35e751aaaffdc36be4a10
BLAKE2b-256 58376b90f502653fd5c79d1a05db0bac531cad540af526c561989d27e16c9454

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rtmodel-3.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4b45e6e25defdbf838af9ae2af3c9e2b85ada292747433ae5cded5c7a648c369
MD5 584291fb38023ab7ddb4990cb8f6e413
BLAKE2b-256 410dfaf6d582cdf50b0af44360d78df2f27844e0f63cb9f218b86bbbfdf1d68d

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for rtmodel-3.1-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 862962558b569448168c8fe6295ca05a335156f3fdde036a0023e4fbd8cb1802
MD5 b8a63c0bb1f8065e6e4ec057f67e5f0e
BLAKE2b-256 b0a0f5995d6a3187b3eaa3e1bac218cd0092908c5f29bc3760fccbda70770a7d

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rtmodel-3.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.9

File hashes

Hashes for rtmodel-3.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 111c99f2565bca3bb0685c9a702f7ccd7856cc911831b19c3d32a3f3f4e16027
MD5 9d5312fbb0b939dbc0f3d3c6cc91c036
BLAKE2b-256 118594545fd5dd6d36684610b9479549dae093e465736783cce15a230e691a1f

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: rtmodel-3.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.9

File hashes

Hashes for rtmodel-3.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 f98b9a911d298399f55689d9a410a7aa4d73ab0af274ce79396c82ec78a29380
MD5 02c88aa125215ac1bcf9e8f91bed36a8
BLAKE2b-256 af6d3c4769509918e0dd38993db6400b7b24d17f3feb0a4f791c763fab4abc60

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rtmodel-3.1-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 8438ec4a556aabc640f1638fb14197bbb17667292a010836931070698327a1cd
MD5 c030a41840e2ee23d86aacf6987d6de6
BLAKE2b-256 88409158c3d0f1e6b9db1ee3b569163dc7193addf023f30dd83a3cb4ec570878

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

  • Download URL: rtmodel-3.1-cp38-cp38-musllinux_1_2_i686.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.8, musllinux: musl 1.2+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.9

File hashes

Hashes for rtmodel-3.1-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 379a8cc5083c5491cd2f8bf49c6ece8eb4de7020456dbcc6350136a59cc4f4b7
MD5 d13368961370d44fdf9928b971b4f718
BLAKE2b-256 7f8286aa54c52c4a6ad567b24ebea5bede6915b751e7b90cdb4d6453008a60f0

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rtmodel-3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 13faafae18ae85431306a27cc34a84580ca43b6f2b5d8a507a5dbf8e7fe5375c
MD5 267b86c1036e0ce577839f0bfa7a0cc0
BLAKE2b-256 ca04d057dd26b6b3b2b8c4438937c72a9e6068eaf916294f01baf908a8a51b06

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rtmodel-3.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 12b7c56111498e26b201617c63ea89bb3321194406a4ed769c66a323feb45f65
MD5 3f99dbb345a677bed187f7898f9d42e3
BLAKE2b-256 e5e0942732544152cc9814a8f5aa168aa4a056db625a95b0edfcfc82d70e6091

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for rtmodel-3.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5ca81c4169e586b44b172a20ab2cdef424bc3e0cf6384d19cc22e8cd9a9cc0ca
MD5 48fabcd805446e69252cb5e11bda2371
BLAKE2b-256 eada078b8f42affdb052d2999a52aa4ce13cc3e014a83dab11de08c56dfd320c

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for rtmodel-3.1-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 db30c8d8b4028ccc177d483c9bbd88242e7e56966614d26c4175d1fde25bbc19
MD5 6ce4cd25abca86b1d6348e81ed30599d
BLAKE2b-256 5437c15e7b92d3d6b1f2f024e0cb6f60223f0859d3c5792ba23549b8be9be19e

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: rtmodel-3.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.9

File hashes

Hashes for rtmodel-3.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 30d9a385293e0b42db7c7868ccc91c9dc5553c8eeface213699d2b1ce2320597
MD5 3addd1f447d1bc5e8d4d1dd4ecf93f93
BLAKE2b-256 53ac7fc5e424152ddd27a943da6d6dcb3740dd63b62d0570e07deeafe64af819

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rtmodel-3.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.9

File hashes

Hashes for rtmodel-3.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 445200fd4da0abcc8fdf336d14b78e6642b24c106aa76ede75c67b943967e5d7
MD5 c00dd2d94bcd3c2e0a07e53232ba5e16
BLAKE2b-256 83f6bbef214f19a9c794d4d0ceccee3d43af7962a9ed26d8221dba53a46bac79

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for rtmodel-3.1-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 4a2c7f1355fd63aa566378ecb5f14a22d0e4c829ecb42fdbcfa4bc0591abc8a6
MD5 0923e808bc55502d0a17c40c33d20dcb
BLAKE2b-256 8a77cec0a425ebbf5e436fac1ca2afecf0f190e3d9b5fff71b612cdbc25f58ab

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp37-cp37m-musllinux_1_2_i686.whl.

File metadata

  • Download URL: rtmodel-3.1-cp37-cp37m-musllinux_1_2_i686.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.7m, musllinux: musl 1.2+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.11.9

File hashes

Hashes for rtmodel-3.1-cp37-cp37m-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 4839a2666512d008c44bebf659952ea75b151de436ff6e20600e1b5625dfff3f
MD5 7b28413c6442222ddc41967fc60ae920
BLAKE2b-256 7445030253ac673d57f0ace9bce113ee14d7a89a47cb782e4c953488b0a5712a

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for rtmodel-3.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 566811329f40d8324be3d9052c15cafc294bf418452ec96e50687c3061f7b668
MD5 13332120974ecc30507107e8b9ffd410
BLAKE2b-256 429ae9a1d4e5545435bb2f9309901fb23ba89c8d55d0803ea34e2fc31a3bfb70

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for rtmodel-3.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 99c6996805dab575ec17254a981b5d59ace8775ff5fae560b32d0924fb1b7500
MD5 2df0e69fa640163001134570ff5156f6
BLAKE2b-256 4e172a728da5d3269c0aafaa76285d18a880bf5e559718ec2bb23f5e96be4e9d

See more details on using hashes here.

File details

Details for the file rtmodel-3.1-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for rtmodel-3.1-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 a44a346664c76af0c90b4b00ae4e6d7eeeb3f351dd379b55d45df6278d3a0b56
MD5 dfa85156cb8b449675e0d6c6f8ec3adc
BLAKE2b-256 90583cb579b29b3927c0a47aeab9ac0162d97652fbfe71516e57d44a1907f0e4

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page