Skip to main content

A python package for attacking Russian NLP models

Project description

Robustness Evaluation of Pre-trained Language Models in the Russian Language

This is a repo with experiments for Robustness Evaluation of Pre-trained Language Models in the Russian Language and a tool ru_attacker for attacking Russian NLP models

Installation

pip install ru_attacker

Usage example

Set model

>>> from ru_attacker.models import RobertaModel
>>> roberta_checkpoints = "Roberta_checkpoints"
>>> ruRoberta = RobertaModel(roberta_checkpoints)

Set dataset

>>> from ru_attacker.models.set_dataset import get_data
>>> data_dir = "TERRa/val.jsonl" 
>>> data = get_data(data_dir)

Set attack

>>> from ru_attacker.attacks import WordOrder
>>> word_order_attack = WordOrder()

Attack model and view results

>>> results = word_order_attack.attack(ruRoberta, data)
                  [Succeeded / Failed / Skipped / Total] 0 / 1 / 0 / 1:
                  entailment --> not_entailment
                  original premise: """Решение носит символический характер, так как взыскать компенсацию практически невозможно"", - отмечается в сообщении."
                  original hypothesis: Взыскать компенсацию не получится.
                  
                  transformed: не компенсацию Взыскать получится .

Convert results to DataFrame

>>> import pandas as pd
>>> dataframe = pd.DataFrame(results)

Here is Tutorial

Experiments

All the data used in experiments and the results are in data folder (TERRa and results correspondingly).

All experiments can be reproduced in Experiments.ipynb.

Models checkpoints are available via:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ru_attacker-0.0.4.tar.gz (11.2 kB view hashes)

Uploaded Source

Built Distribution

ru_attacker-0.0.4-py3-none-any.whl (15.3 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page